[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Use Cases for QoE Test in Heterogeneous Networks Scenarios

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

In heterogeneous environment, different services have different QoE requirements. The purpose of this paper is to identify the characteristics of emerging typical mobile multimedia applications including video services, audio services and burst data services. For each use case, we analyze the QoE test requirement. This analysis will offer the important guideline for design of the system architecture for QoE test. Furthermore, the bottlenecks of existing wireless access technologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  2. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 151–171 (2019)

    Article  Google Scholar 

  3. Zhang, K., Chen, L., An, Y., Cui, P.: A QoE test system for vehicular voice cloud services. Mobile Netw. Appl. 1, 6 (2019). https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

  4. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO Scheduling effectiveness analysis for bursty data service from view of QoE. Chinese J. Electron. 26(5), 1079–1085 (2017)

    Article  Google Scholar 

  5. Jiang, D., Wang, Y., Lv, Z., et al.: Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inf. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  6. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 1(1), 1–12 (2018)

    MathSciNet  Google Scholar 

  7. Chen, L., et al.: A replay approach for remote testing user experience of mobile bursty data application. Int. J. Online Eng. 9, 18–23 (2013)

    Article  Google Scholar 

  8. Jiang, D., Huo, L., Lv, Z., et al.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  9. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  10. Andrews, J., et al.: What Will 5G Be? IEEE J. Sel. Areas Commun. (JSAC) 32, 1065–1082 (2014)

    Google Scholar 

  11. Martini, M.G., Chen, C., Chen, Z., Dagiuklas, T., Sun, L., Zhu, X.: Guest editorial QoE-aware wireless multimedia systems. IEEE J. Sel. Areas Commun. (JSAC) 30, 1153–1156 (2012)

    Article  Google Scholar 

  12. Jiang, D., Wang, W., Shi, L., et al.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 5(3), 1–2 (2018)

    Google Scholar 

  13. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  14. Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2013)

    Article  Google Scholar 

  15. Yeh, S., et al.: Capacity and coverage enhancement in heterogeneous networks. IEEE Wirel. Commun. 18(3), 32–38 (2011)

    Article  Google Scholar 

  16. Damnjanovic, A., et al.: A survey on 3GPP heterogeneous networks. IEEE Wirel. Commun. 18(3), 10–21 (2011)

    Article  Google Scholar 

  17. Cisco Systems, Inc.: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019 White Paper. Whitepaper (2015)

    Google Scholar 

  18. Chen, Y., Wu, K., Zhang, Q.: From QoS to QoE: a tutorial on video quality assessment. IEEE Commun. Surv. Tutor. 17(2), 1126–1165 (2015)

    Article  Google Scholar 

  19. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220(2017), 160–169 (2017)

    Article  Google Scholar 

  20. Jiang, D., Wang, Y., Lv, Z., et al.: Intelligent optimization-based reliable energy-efficient networking in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. (2019)

    Google Scholar 

  21. Seufert, M., Egger, S., Slanina, M., Zinner, T., Hobfeld, T., Tran-Gia, P.: A survey on quality of experience of HTTP adaptive streaming. IEEE Commun. Surv. Tutor. 17(1), 469–492 (2015)

    Article  Google Scholar 

  22. De Vriendt, J., De Vleeschauwer, D., Robinson, D.C.: QoE model for video delivered over an LTE network using HTTP adaptive streaming. Bell Labs Tech. J. 18(4), 45–62 (2014)

    Article  Google Scholar 

  23. Staelens, N., et al.: Subjective quality assessment of longer duration video sequences delivered over HTTP adaptive streaming to tablet devices. IEEE Trans. Broadcast. 60(4), 707–714 (2014)

    Article  Google Scholar 

  24. 3GPP: General aspects and principles for interfaces supporting multimedia broadcast multicast service (MBMS) within E-UTRAN, Rel. 11: Eur. Telecommun. Stand. Inst., Route des Lucioles, France. Technical report 36.440 (2012)

    Google Scholar 

  25. Carla, L., Chiti, F., Fantacci, R., Khirallah, C., Tassi, A.: Power efficient resource allocation strategies for layered video delivery over eMBMS networks. In: Proceedings IEEE International Conference on Communication (ICC), Sydney, NSW, Australia, pp. 3505–3510 (2014)

    Google Scholar 

  26. Militano, L., Condoluci, M., Araniti, G., Molinaro, A., Iera, A., Muntean, G.-M.: Single frequency-based device-to-device-enhanced video delivery for evolved multimedia broadcast and multicast services. IEEE Trans. Broadcast. 61(2), 263–278 (2015)

    Article  Google Scholar 

  27. Kumar, U., Oyman, O.: QoE evaluation for video streaming over eMBMS. In: International Conference on Computing, Networking and Communications (ICNC), pp. 555–559 (2013)

    Google Scholar 

  28. Hewage, C.T.E.R., Martini, M.G.: Quality of experience for 3D video streaming. IEEE Commun. Mag. 51(5), 101–107 (2013)

    Article  Google Scholar 

  29. Jooyoung, L., et al.: A stereoscopic 3-D broadcasting system using fixed and mobile hybrid delivery and the quality assessment of the mixed resolution stereoscopic video. IEEE Trans. Broadcast. 61(2), 222–237 (2015)

    Article  Google Scholar 

  30. ipsmarx. https://www.ipsmarx.com/blog/voip-market-trends-one-third-of-enterprises-now-using-voip/

  31. Jelassi, S., et al.: Quality of experience of VoIP service: a survey of assessment approaches and open issues. IEEE Commun. Surv. Tutor. 14(2), 491–513 (2012)

    Article  Google Scholar 

  32. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mobile Netw. Appl. 1, 9 (2020). https://doi.org/10.1007/s11036-019-01414-4

    Article  Google Scholar 

  33. Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mobile Netw. Appl. (2019)

    Google Scholar 

  34. Scheets, G., Parperis, M., Singh, R.: Voice over the internet: a tutorial discussing problems and solutions associated with alternative transport. IEEE Commun. Surv. Tutor. 6(2), 1–0 (2004)

    Article  Google Scholar 

  35. Rong, B., Yi, Q.: An enhanced SIP proxy server for wireless VoIP in wireless mesh networks. IEEE Commun. Mag. 46(1), 108–113 (2008)

    Article  Google Scholar 

  36. Srivastava, V., Mehul, M.: Cross-layer design: a survey and the road ahead. IEEE Commun. Mag. 43(12), 112–119 (2005)

    Article  Google Scholar 

  37. Rix, A.W., Beerends, J.G., Kim, D.-S., Kroon, P., Ghitza, O.: Objective assessment of speech and audio quality – technology and applications. IEEE Trans. Audio Speech Lang. Process. 14(6), 1890–1901 (2006)

    Article  Google Scholar 

  38. Kitawaki, N.: Perspectives on multimedia quality prediction methodologies for advanced mobile and ip-based telephony. In: Workshop Wideband Speech Quality in Terminals and Networks: Assessment and Prediction (2004)

    Google Scholar 

  39. Hassan, J., et al.: Managing quality of experience for wireless VOIP using noncooperative games. IEEE J. Sel. Areas Commun. 30(7), 1193–1204 (2012)

    Article  Google Scholar 

  40. Wang, Y., Jiang, D., Huo, L., et al.: A new traffic prediction algorithm to software defined networking. Mobile Netw. Appl. (2019)

    Google Scholar 

  41. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mobile Netw. Appl. (2019)

    Google Scholar 

  42. Gand, F., Sergio, B.: Towards real-time anomalies monitoring for QoE indicators. Aannals of Telecommunications - annales des télécommunications 65, 59–71 (2010)

    Google Scholar 

  43. ITU. ITU-T Recommendation G.107, The E-model, a computational model for use in transmission planning (2005)

    Google Scholar 

  44. TM Forum. GB923, Wireless Service Measurements Handbook, 3rd ed (2004)

    Google Scholar 

  45. TM Forum. GB917-2, SLA Management Handbook., 2.5 ed. (2005)

    Google Scholar 

  46. Kim, D., Lim, H., Yoo, J., et al.: Analysis of service transaction flow based on user's actions to develop KQIs for WiBro service. In: Tthe Fourth Advanced International Conference on Telecommunications. Athens, Greece, pp. 77–84 (2008)

    Google Scholar 

  47. Vishwanath, K.V., Vahdat, A.S.: Realistic and responsive network traffic generation. IEEE/ACM Trans. Networking 17(3), 712–725 (2009)

    Article  Google Scholar 

  48. Klemm, A.: Traffic modeling and characterization for UMTS networks. In: 2001 IEEE Global Telecommunications Conference, San Antonio, Texas, vol. 3, pp. 1741–1746 (2001)

    Google Scholar 

  49. Huo, L., Jiang, D., Qi, S., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mobile Netw. Appl. (2019)

    Google Scholar 

  50. Huo, L., Jiang, D., Zhu, X., et al.: An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int. J. Commun. Syst. 1–12 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No.2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Chen, L., Cui, P., Zhang, K., An, Y. (2021). Use Cases for QoE Test in Heterogeneous Networks Scenarios. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72795-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72794-9

  • Online ISBN: 978-3-030-72795-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics