Abstract
Machine Learning (ML) provides important techniques for classification and predictions. Most of these are black-box models for users and do not provide decision-makers with an explanation. For the sake of transparency or more validity of decisions, the need to develop explainable/interpretable ML-methods is gaining more and more importance. Certain questions need to be addressed:
-
How does an ML procedure derive the class for a particular entity?
-
Why does a particular clustering emerge from a particular unsupervised ML procedure?
-
What can we do if the number of attributes is very large?
-
What are the possible reasons for the mistakes for concrete cases and models?
For binary attributes, Formal Concept Analysis (FCA) offers techniques in terms of intents of formal concepts, and thus provides plausible reasons for model prediction. However, from the interpretable machine learning viewpoint, we still need to provide decision-makers with the importance of individual attributes to the classification of a particular object, which may facilitate explanations by experts in various domains with high-cost errors like medicine or finance.
We discuss how notions from cooperative game theory can be used to assess the contribution of individual attributes in classification and clustering processes in concept-based machine learning. To address the 3rd question, we present some ideas on how to reduce the number of attributes using similarities in large contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 26–28 May 1993, pp. 207–216. ACM Press (1993)
Alves, G., Bhargava, V., Couceiro, M., Napoli, A.: Making ML models fairer through explanations: the case of limeout. CoRR abs/2011.00603 (2020)
Belohlávek, R., Baets, B.D., Konecny, J.: Granularity of attributes in formal concept analysis. Inf. Sci. 260, 149–170 (2014)
Belohlávek, R., Baets, B.D., Outrata, J., Vychodil, V.: Inducing decision trees via concept lattices. Int. J. Gen. Syst. 38(4), 455–467 (2009)
Belohlávek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)
Bocharov, A., Gnatyshak, D., Ignatov, D.I., Mirkin, B.G., Shestakov, A.: A lattice-based consensus clustering algorithm. In: Huchard, M., Kuznetsov, S.O. (eds.) Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, Russia, CEUR Workshop Proceedings, 18–22 July 2016, vol. 1624, pp. 45–56. CEUR-WS.org (2016)
Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Mach. Learn. 24(2), 95–122 (1996)
Caruana, R., Lundberg, S., Ribeiro, M.T., Nori, H., Jenkins, S.: Intelligible and explainable machine learning: best practices and practical challenges. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) KDD 2020: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 23–27 August 2020, pp. 3511–3512. ACM (2020)
Eklund, P.W., Ducrou, J., Dau, F.: Concept similarity and related categories in information retrieval using Formal Concept Analysis. Int. J. Gen. Syst. 41(8), 826–846 (2012)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37–54 (1996)
Finn, V.: On machine-oriented formalization of plausible reasoning in F. Bacon-J.S. Mill Style. Semiotika i Informatika 20, 35–101 (1983). (in Russian)
Ganter, B., Kuznetsov, S.O.: Hypotheses and version spaces. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS-ConceptStruct 2003. LNCS (LNAI), vol. 2746, pp. 83–95. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45091-7_6
Ganter, B., Kuznetsov, S.O.: Scale coarsening as feature selection. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 217–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0_16
Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49291-8
Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2
Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016)
Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1(4), 293–308 (1966)
Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. In: Braslavski, P., Karpov, N., Worring, M., Volkovich, Y., Ignatov, D.I. (eds.) RuSSIR 2014. CCIS, vol. 505, pp. 42–141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25485-2_3
Ignatov, D.I., Kuznetsov, S.O., Poelmans, J.: Concept-based biclustering for internet advertisement. In: 12th IEEE International Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium, 10 December 2012, pp. 123–130 (2012)
Ignatov, D.I., Kwuida, L.: Interpretable concept-based classification with shapley values. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 90–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_7
Ignatov, D.I., Kwuida, L.: Shapley and banzhaf vectors of a formal concept. In: Valverde-Albacete, F.J., Trnecka, M. (eds.) Proceedings of the Fifthteenth International Conference on Concept Lattices and Their Applications, Tallinn, Estonia, CEUR Workshop Proceedings, June 29–July 1, 2020, vol. 2668, pp. 259–271. CEUR-WS.org (2020)
Ignatov, D.I., Nenova, E., Konstantinova, N., Konstantinov, A.V.: Boolean matrix factorisation for collaborative filtering: An FCA-based approach. In: Agre, G., Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) AIMSA 2014. LNCS (LNAI), vol. 8722, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10554-3_5
John, S.: Mill, A System of Logic, Ratiocinative and Inductive, Being a Connected View of the Principles of Evidence and the Methods of Scientific Investigation. Green, and Co., Longmans, London (1843)
Kadyrov, T., Ignatov, D.I.: Attribution of customers’ actions based on machine learning approach. In: Proceedings of the Fifth Workshop on Experimental Economics and Machine Learning co-located with the Seventh International Conference on Applied Research in Economics (iCare7), Perm, Russia, 26 September 2019, vol-2479, pp. 77–88. CEUR-ws (2019)
Kashnitsky, Y., Kuznetsov, S.O.: Global optimization in learning with important data: an FCA-based approach. In: Huchard, M., Kuznetsov, S.O. (eds.) Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, Russia, CEUR Workshop Proceedings, 18–22 July 2016, vol. 1624, pp. 189–201. CEUR-WS.org (2016)
Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H.M., Vaughan, J.W.: Interpreting interpretability: understanding data scientists’ use of interpretability tools for machine learning. In: Bernhaupt, R., et al. (eds.) CHI 2020: CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April, 2020, pp. 1–14. ACM (2020)
Kaytoue, M., Kuznetsov, S.O., Macko, J., Napoli, A.: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70(1–2), 55–79 (2014)
Konecny, J.: On attribute reduction in concept lattices: methods based on discernibility matrix are outperformed by basic clarification and reduction. Inf. Sci. 415, 199–212 (2017)
Konecny, J., Krajca, P.: On attribute reduction in concept lattices: experimental evaluation shows discernibility matrix based methods inefficient. Inf. Sci. 467, 431–445 (2018)
Kuitché, R.S., Temgoua, R.E.A., Kwuida, L.: A similarity measure to generalize attributes. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of the Fourteenth International Conference on Concept Lattices and Their Applications, CLA 2018, Olomouc, Czech Republic, CEUR Workshop Proceedings, 12–14 June 2018, vol. 2123, pp. 141–152. CEUR-WS.org (2018)
Kuznetsov, S.O.: Machine learning and formal concept analysis. ICFCA 2004, 287–312 (2004)
Kuznetsov, S.O.: Galois connections in data analysis: contributions from the soviet era and modern Russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_11
Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)
Kuznetsov, S.O., Makhalova, T.P.: On interestingness measures of formal concepts. Inf. Sci. 442–443, 202–219 (2018)
Kuznetsov, S.O., Makhazhanov, N., Ushakov, M.: On neural network architecture based on concept lattices. In: Kryszkiewicz, M., Appice, A., Slezak, D., Rybinski, H., Skowron, A., Ras, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 653–663. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60438-1_64
Kuznetsov, S.O., Poelmans, J.: Knowledge representation and processing with formal concept analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 3(3), 200–215 (2013)
Kuznetsov, S.: Jsm-method as a machine learning method. Method. Itogi Nauki i Tekhniki ser. Informatika 15, 17–53 (1991). (in Russian)
Kuznetsov, S.: Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity. Nauchn. Tekh. Inf. Ser. 2(12), 217–29 (1991). (in Russian)
Kuznetsov, S.: Mathematical aspects of concept analysis. J. Math. Sci. 80(2), 1654–1698 (1996)
Kwuida, L., Kuitché, R., Temgoua, R.: On the size of \(\exists \)-generalized concepts. ArXiv:1709.08060 (2017)
Kwuida, L., Kuitché, R.S., Temgoua, R.E.A.: On the size of \(\exists \)-generalized concept lattices. Discret. Appl. Math. 273, 205–216 (2020)
Kwuida, L., Missaoui, R., Balamane, A., Vaillancourt, J.: Generalized pattern extraction from concept lattices. Ann. Math. Artif. Intell. 72(1–2), 151–168 (2014)
Kwuida, L., Missaoui, R., Boumedjout, L., Vaillancourt, J.: Mining generalized patterns from large databases using ontologies (2009). ArXiv:0905.4713
Kwuida, L., Missaoui, R., Vaillancourt, J.: Using taxonomies on objects and attributes to discover generalized patterns. In: Szathmary, L., Priss, U. (eds.) Proceedings of The Ninth International Conference on Concept Lattices and Their Applications, Fuengirola (Málaga), CEUR Workshop Proceedings, Spain, 11–14 October 2012, vol. 972, pp. 327–338. CEUR-WS.org (2012)
Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_10
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I. et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)
Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et Sci. Humaines. 113, 35–55 (1991)
Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers, Amsterdam (1996)
Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning. In: Reddy, R. (ed.) Proceedings of the 5th International Joint Conference on Artificial Intelligence 1977, pp. 305–310. William Kaufmann (1977)
Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/interpretable-ml-book/
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)
Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)
Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Syst. Appl. 40(16), 6601–6623 (2013)
Prediger, S.: Formal concept analysis for general objects. Discret. Appl. Math. 127(2), 337–355 (2003)
Priss, U., Old, L.J.: Data weeding techniques applied to Roget’s thesaurus. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT/KPP -2007. LNCS (LNAI), vol. 6581, pp. 150–163. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22140-8_10
Roth, C., Obiedkov, S., Kourie, D.: Towards concise representation for taxonomies of epistemic communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78921-5_17
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell 1(5), 206–215 (2019)
Rudolph, S.: Using FCA for encoding closure operators into neural networks. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS-ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 321–332. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73681-3_24
Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)
Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3145–3153. PMLR, International Convention Centre, Sydney (2017)
Srikant, R., Agrawal, R.: Mining generalized association rules. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) VLDB 95, Proceedings of 21th International Conference on Very Large Data Bases, Zurich, Switzerland, 11–15 September 1995, pp. 407–419. Morgan Kaufmann (1995)
Srikant, R., Agrawal, R.: Mining generalized association rules. Future Gener. Comput. Syst. 13(2–3), 161–180 (1997)
Strumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)
Stumme, G., Taouil, R., Bastide, Y., Lakhal, L.: Conceptual clustering with iceberg concept lattices. In: Proceedings of GI-Fachgruppentreffen Maschinelles Lernen, vol. 1 (2001)
Tatti, N., Moerchen, F.: Finding robust itemsets under subsampling. ICDM 2011, 705–714 (2011)
Valtchev, P., Missaoui, R.: Similarity-based clustering versus galois lattice building: strengths and weaknesses. In: Huchard, M., Godin, R., Napoli, A. (eds.) Contributions of the ECOOP 2000 Workshop, “Objects and Classification: a Natural Convergence", European Conference on Object-Oriented Programming (2000), vol. Research Report LIRMM, no. 00095, p. w13 (2000)
Acknowledgements
The study was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics and funded by the Russian Academic Excellence Project ‘5–100’. The second author was also supported by Russian Science Foundation under grant 17-11-01276 at St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia. The second author would like to thank Fuad Aleskerov, Alexei Zakharov, and Shlomo Weber for the inspirational lectures on Collective Choice and Voting Theory.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kwuida, L., Ignatov, D.I. (2021). On Interpretability and Similarity in Concept-Based Machine Learning. In: van der Aalst, W.M.P., et al. Analysis of Images, Social Networks and Texts. AIST 2020. Lecture Notes in Computer Science(), vol 12602. Springer, Cham. https://doi.org/10.1007/978-3-030-72610-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-72610-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72609-6
Online ISBN: 978-3-030-72610-2
eBook Packages: Computer ScienceComputer Science (R0)