[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complement Lexical Retrieval Model with Semantic Residual Embeddings

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

Abstract

This paper presents clear, a retrieval model that seeks to complement classical lexical exact-match models such as BM25 with semantic matching signals from a neural embedding matching model.clear explicitly trains the neural embedding to encode language structures and semantics that lexical retrieval fails to capture with a novel residual-based embedding learning method. Empirical evaluations demonstrate the advantages of clear over state-of-the-art retrieval models, and that it can substantially improve the end-to-end accuracy and efficiency of reranking pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dataset is available at https://microsoft.github.io/msmarco/.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2015)

    Google Scholar 

  2. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a Siamese time delay neural network. Adv. Neural Inf. Process. Syst. 6, 737–744 (1993)

    Google Scholar 

  3. Caid, W.R., Dumais, S.T., Gallant, S.I.: Learned vector-space models for document retrieval. Inf. Process. Manag. 31(3), 419–429 (1995)

    Article  Google Scholar 

  4. Chang, W., Yu, F.X., Chang, Y., Yang, Y., Kumar, S.: Pre-training tasks for embedding-based large-scale retrieval. In: 8th International Conference on Learning Representations (2020)

    Google Scholar 

  5. Chen, T., Van Durme, B.: Discriminative information retrieval for question answering sentence selection. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pp. 719–725 (2017)

    Google Scholar 

  6. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2019 deep learning track. In: TREC (to appear) (2019)

    Google Scholar 

  7. Dai, Z., Callan, J.: Context-aware document term weighting for ad-hoc search. In: WWW 2020: The Web Conference 2020, pp. 1897–1907 (2020)

    Google Scholar 

  8. Dai, Z., Callan, J.: Context-aware term weighting for first-stage passage retrieval. In: The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (to appear) (2020)

    Google Scholar 

  9. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)

    Google Scholar 

  11. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, pp. 55–64 (2016)

    Google Scholar 

  12. Guo, R., et al.: Accelerating large-scale inference with anisotropic vector quantization. In: Proceedings of the 37th International Conference on Machine Learning (2020)

    Google Scholar 

  13. Guu, K., Lee, K., Tung, Z., Pasupat, P., Chang, M.: REALM: retrieval-augmented language model pre-training. CoRR abs/2002.08909 (2020)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  15. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. CoRR abs/1702.08734 (2017)

    Google Scholar 

  16. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP (2014)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  18. Kuzi, S., Zhang, M., Li, C., Bendersky, M., Najork, M.: Leveraging semantic and lexical matching to improve the recall of document retrieval systems: A hybrid approach. ArXiv abs/2010.01195 (2020)

    Google Scholar 

  19. Lafferty, J.D., Zhai, C.: Document language models, query models, and risk minimization for information retrieval. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 111–119 (2001)

    Google Scholar 

  20. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 120–127 (2001)

    Google Scholar 

  21. Lee, K., Chang, M., Toutanova, K.: Latent retrieval for weakly supervised open domain question answering. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, pp. 6086–6096 (2019)

    Google Scholar 

  22. Lin, J.: The neural hype and comparisons against weak baselines. In: SIGIR Forum, pp. 40–51 (2018)

    Google Scholar 

  23. Luan, Y., Eisenstein, J., Toutanova, K., Collins, M.: Sparse, dense, and attentional representations for text retrieval. Transactions of the Association of Computational Linguistics (2020)

    Google Scholar 

  24. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824-836 (2018)

    Google Scholar 

  25. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In: SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 472–479 (2005)

    Google Scholar 

  26. Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1291–1299 (2017)

    Google Scholar 

  27. Nguyen, T., et al.: MS MARCO: A human generated machine reading comprehension dataset. In: Proceedings of the Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches 2016 Co-Located with the 30th Annual Conference on Neural Information Processing Systems (2016)

    Google Scholar 

  28. Nogueira, R., Cho, K.: Passage re-ranking with bert. arXiv:1901.04085 (2019)

  29. Nogueira, R., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction. CoRR abs/1904.08375 (2019)

    Google Scholar 

  30. Rajashekar, T.B., Croft, W.B.: Combining automatic and manual index representations in probabilistic retrieval. J. Am. Soc. Inf. Sci. 46(4), 272–283 (1995)

    Article  Google Scholar 

  31. Reimers, N., Gurevych, I.: Sentence-Bert: Sentence embeddings using Siamese Bert-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pp. 3980–3990 (2019)

    Google Scholar 

  32. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 232–241 (1994)

    Google Scholar 

  33. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill Book Company (1984)

    Google Scholar 

  34. Shrivastava, A., Li, P.: Asymmetric LSH (ALSH) for sublinear time maximum inner product search (MIPS). Adv. Neural Inf. Process. Syst. 27, 2321–2329 (2014)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 5998–6008 (2017)

    Google Scholar 

  36. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: ESANN 1999, 7th European Symposium on Artificial Neural Networks, pp. 219–224 (1999)

    Google Scholar 

  37. Wolf, T., et al.: Huggingface’s transformers: State-of-the-art natural language processing. CoRR abs/1910.03771 (2019)

    Google Scholar 

  38. Yang, P., Fang, H., Lin, J.: Anserini: enabling the use of Lucene for information retrieval research. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1253–1256 (2017)

    Google Scholar 

  39. Yao, X., Van Durme, B., Clark, P.: Automatic coupling of answer extraction and information retrieval. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 159–165 (2013)

    Google Scholar 

  40. Zamani, H., Dehghani, M., Croft, W.B., Learned-Miller, E.G., Kamps, J.: From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 497–506 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyu Gao , Zhuyun Dai , Tongfei Chen , Zhen Fan , Benjamin Van Durme or Jamie Callan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, L., Dai, Z., Chen, T., Fan, Z., Van Durme, B., Callan, J. (2021). Complement Lexical Retrieval Model with Semantic Residual Embeddings. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics