[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fusing Local and Global Features for Person Re-identification Using Multi-stream Deep Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (MedPRAI 2020)

Abstract

The field of person re-identification remains a challenging topic in video surveillance and public security because it is facing many problems related to the variations of the position, background and brightness scenes. In order to minimize the impact of those variations, we introduce in this work a multi-stream re-identification system based on the fusion of local and global features. The proposed system uses first a body partition segmentation network (SEG-CNN) to segment three different body regions (the whole body part, the middle and the down body parts) that will represent local features. While the original image will be used to extract global features. Second, a multi-stream fusion framework is performed to fuse the outputs of the individual streams and generate the final predictions. We experimentally prove that the multi-stream combination method improves the recognition rates and provides better results than classic fusion methods. In the rank-1/mAP, the improvement is of \(7,24 \%\)/9, 5 for the Market-1501 benchmark dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion for multimedia analysis: a survey. Multimedia Syst. 16(6), 345–379 (2010). https://doi.org/10.1007/s00530-010-0182-0

    Article  Google Scholar 

  2. Bialkowski, A., Denman, S., Sridharan, S., Fookes, C., Lucey, P.: A database for person re-identification in multi-camera surveillance networks. In: International Conference on Digital Image Computing Techniques and Applications (DICTA), pp. 1–8. IEEE (2012)

    Google Scholar 

  3. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: Computer Vision and Pattern Recognition (CVPR). pp. 1335–1344 (2016)

    Google Scholar 

  4. Cho, Y.J., Yoon, K.J.: Improving person re-identification via pose-aware multi-shot matching. In: Computer Vision and Pattern Recognition (CVPR), pp. 1354–1362 (2016)

    Google Scholar 

  5. Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. In: Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1528–1535. IEEE (2006)

    Google Scholar 

  6. Ghorbel, M., Ammar, S., Kessentini, Y., Jmaiel, M.: Improving person re-identification by background subtraction using two-stream convolutional networks. In: Karray, F., Campilho, A., Yu, A. (eds.) ICIAR 2019. LNCS, vol. 11662, pp. 345–356. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27202-9_31

    Chapter  Google Scholar 

  7. Gong, S., Cristani, M., Yan, S., Loy, C.C.: Person Re-Identification, 1st edn., p. 445. springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Hu, X., Jiang, Z., Guo, X., Zhou, Y.: Person re-identification by deep learning muti-part information complementary. In: IEEE International Conference on Image Processing (ICIP), pp. 848–852 (2018)

    Google Scholar 

  10. Huang, H., Li, D., Zhang, Z., Chen, X., Huang, K.: Adversarially occluded samples for person re-identification. In: Computer Vision and Pattern Recognition (CVPR), pp. 5098–5107 (2018)

    Google Scholar 

  11. Huang, Y., Zha, Z.J., Fu, X., Zhang, W.: Illumination-invariant person re-identification. In: ACM International Conference on Multimedia, pp. 365–373 (2019)

    Google Scholar 

  12. Huang, Z., et al.: Contribution-based multi-stream feature distance fusion method with k-distribution re-ranking for person re-identification. IEEE Access 7, 35631–35644 (2019)

    Article  Google Scholar 

  13. Karanam, S., Li, Y., Radke, R.J.: Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: IEEE International Conference on Computer Vision, pp. 4516–4524 (2015)

    Google Scholar 

  14. Kittler, J.: Combining classifiers: a theoretical framework. Pattern Anal. Appl. 1(1), 18–27 (1998). https://doi.org/10.1007/BF01238023

    Article  MathSciNet  Google Scholar 

  15. Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: Computer Vision and Pattern Recognition (CVPR), pp. 384–393 (2017)

    Google Scholar 

  16. Liang, X., Gong, K., Shen, X., Lin, L.: Look into person: Joint body parsing & pose estimation network and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 41, 871–885 (2018)

    Google Scholar 

  17. Mansouri, N., Ammar, S., Kessentini, Y.: Improving person re-identification by combining Siamese convolutional neural network and re-ranking process. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8. IEEE (2019)

    Google Scholar 

  18. Quan, R., Dong, X., Wu, Y., Zhu, L., Yang, Y.: Auto-ReID: searching for a part-aware convnet for person re-identification. arXiv preprint arXiv:1903.09776 (2019)

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  20. Tian, M., et al.: Eliminating background-bias for robust person re-identification. In: Computer Vision and Pattern Recognition (CVPR), pp. 5794–5803 (2018)

    Google Scholar 

  21. Varior, R.R., Haloi, M., Wang, G.: Gated Siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791–808. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_48

    Chapter  Google Scholar 

  22. Wei, L., Zhang, S., Yao, H., Gao, W., Tian, Q.: GLAD: global-local-alignment descriptor for scalable person re-identification. IEEE Trans. Multimedia 21(4), 986–999 (2018)

    Article  Google Scholar 

  23. Weinrich, C., Volkhardt, M., Gross, H.M.: Appearance-based 3D upper-body pose estimation and person re-identification on mobile robots. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 4384–4390. IEEE (2013)

    Google Scholar 

  24. Yao, H., Zhang, S., Hong, R., Zhang, Y., Xu, C., Tian, Q.: Deep representation learning with part loss for person re-identification. IEEE Trans. Image Process. 28(6), 2860–2871 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: IEEE International Conference on Computer Vision (ICCV), pp. 1116–1124 (2015)

    Google Scholar 

  26. Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person reidentification. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(1), 13 (2018)

    Google Scholar 

  27. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Computer Vision and Pattern Recognition (CVPR), pp. 1318–1327. IEEE (2017)

    Google Scholar 

Download references

Acknowledgement

This project is carried out under the MOBIDOC scheme, funded by the EU through the EMORI program and managed by the ANPR. We thank Anavid for assistance. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sourour Ammar , Yousri Kessentini , Mohamed Jmaiel or Ahmed Chaari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghorbel, M., Ammar, S., Kessentini, Y., Jmaiel, M., Chaari, A. (2021). Fusing Local and Global Features for Person Re-identification Using Multi-stream Deep Neural Networks. In: Djeddi, C., Kessentini, Y., Siddiqi, I., Jmaiel, M. (eds) Pattern Recognition and Artificial Intelligence. MedPRAI 2020. Communications in Computer and Information Science, vol 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-71804-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71804-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71803-9

  • Online ISBN: 978-3-030-71804-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics