Abstract
We propose a novel data-driven procedure to train a neural network for the swing-up control of underactuated robotic systems. Our approach is inspired by several recent developments ranging from nonlinear control theory to machine learning. We embed a neural network indirectly into the equations of motion of the robotic manipulator as its control input. Using familiar results from passivity-based and energy-shaping control literature, this control function is determined by the appropriate gradients of a neural network, acting as an energy-like (Lyapunov) function. We encode the task of swinging-up robotic systems through the use of transverse coordinates and goal sets; which drastically accelerates the rate of learning by providing a concise target for the neural network. We demonstrate the efficacy of the algorithm with both numerical simulations and experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36(2), 287–295 (2000)
Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations (2018)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)
Conway, B.: Practical methods for optimal control using nonlinear programming (2002)
Deisenroth, M., Rasmussen, C.E.: Pilco: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 465–472 (2011)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Manchester, I.R.: Transverse dynamics and regions of stability for nonlinear hybrid limit cycles. arXiv preprint arXiv:1010.2241 (2010)
Mason, P., Broucke, M., Piccoli, B.: Time optimal swing-up of the planar pendulum. IEEE Trans. Autom. Control 53(8), 1876–1886 (2008)
Mori, S., Nishihara, H., Furuta, K.: Control of unstable mechanical system control of pendulum. Int. J. Control 23(5), 673–692 (1976)
Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)
Park, M.S., Chwa, D.: Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method. IEEE Trans. Ind. Electron. 56(9), 3541–3555 (2009)
Pontryagin, L.S., Mishchenko, E., Boltyanskii, V., Gamkrelidze, R.: The mathematical theory of optimal processes (1962)
Quanser: Linear Servo Base Unit with Inverted Pendulum (2013). Rev. 1.0
Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A.: Universal differential equations for scientific machine learning (2020)
van der Schaft, A.J., Van Der Schaft, A.: L2-gain and Passivity Techniques in Nonlinear Control, vol. 2. Springer, Heidelberg (2000)
Shiriaev, A., Perram, J.W., Canudas-de Wit, C.: Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach. IEEE Trans. Autom. Control 50(8), 1164–1176 (2005)
Shiriaev, A.S., Freidovich, L.B.: Transverse linearization for impulsive mechanical systems with one passive link. IEEE Trans. Autom. Control 54(12), 2882–2888 (2009)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge (2018)
Zhong, Y.D., Dey, B., Chakraborty, A.: Symplectic ode-net: Learning hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sirichotiyakul, W., Satici, A.C. (2021). Data-Driven Design of Energy-Shaping Controllers for Swing-Up Control of Underactuated Robots. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-71151-1_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71150-4
Online ISBN: 978-3-030-71151-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)