[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Combination of AI, Blockchain, and the Internet of Things for Patient Relationship Management

  • Chapter
  • First Online:
Internet of Things

Abstract

The use of the Internet of Things (IoT) in the healthcare sector has shown to be a promising solution to reduce the workload of doctors and provide better service to patients. However, shared data may be subject to theft or misuse due to the security issues on various devices. Moreover, transparency among stakeholders, confidentiality, and micropayments need to be addressed. The objective of this work is to use federated learning over blockchain data generated from IoT devices with the usage of zero-knowledge proof or confidential transactions. The proposed architecture ensures the user a level of privacy set by them while making sure of sharing relevant insights with the concerned parties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 12.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, N., George, R. P., & Jahan, R. (2019). Emerging trends in IoT for categorized health care. In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (Vol. 1, pp. 1438–1441). Kannur, India.

    Chapter  Google Scholar 

  2. Blum, C. (2005). Ant colony optimisation: Introduction and recent trends. Physics of Life Reviews, 2(4), 353–373.

    Article  Google Scholar 

  3. Buterin, V., & Griffith, V. (2017). Casper the friendly finality gadget. arXiv preprint arXiv. 1710.09437.

    Google Scholar 

  4. Caroprese, L., Veltri, P., Vocaturo, E., & Zumpano, E. (2018). Deep learning techniques for electronic health record analysis. In 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA) (pp. 1–4). Zakynthos, Greece.

    Google Scholar 

  5. Che, Z., & Liu, Y. (2017). Deep learning solutions to computational phenotyping in health care. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 1100–1109). New Orleans, LA, USA.

    Chapter  Google Scholar 

  6. Chen, R. Y. (2018). A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain. Future Generation Computer Systems, 80, 198–210.

    Article  Google Scholar 

  7. Chen, J., Duan, K., Zhang, R., Zeng, L., & Wang, W. (2018). An AI based super nodes selection algorithm in blockchain networks. arXiv preprint arXiv. 1808.00216.

    Google Scholar 

  8. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. In Machine learning for healthcare conference (pp. 301–318). LA, Los Angeles, CA, USA.

    Google Scholar 

  9. Coelho, C., Coelho, D., & Wolf, M. (2015). An IoT smart home architecture for long-term care of people with special needs. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (pp. 626–627).

    Chapter  Google Scholar 

  10. Dwivedi, A. D., Srivastava, G., Dhar, S., & Singh, R. (2019). A decentralised privacy-preserving healthcare blockchain for IoT. Sensors, 19(2), 326.

    Article  Google Scholar 

  11. Frederick, M., & Jaiswal, C. (2018). BID: Blockchaining for IoT devices. In 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 806–811).

    Chapter  Google Scholar 

  12. Froelicher, D., Troncoso-Pastoriza, J. R., Sousa, J. S., & Hubaux, J.-P. (2020). Drynx: Decentralised, secure, verifiable system for statistical queries and machine learning on distributed datasets. In IEEE Transactions on Information Forensics and Security.

    Google Scholar 

  13. Golmard, J.-L. (1993). Probabilistic inference in artificial intelligence: The method of Bayesian networks. In Philosophy of probability (pp. 257–291). Dordrecht: Springer.

    Chapter  Google Scholar 

  14. Griggs, K. N., Ossipova, O., Kohlios, C. P., Baccarini, A. N., Howson, E. A., & Hayajneh, T. (2018). Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. Journal of Medical Systems, 42(7), 130.

    Article  Google Scholar 

  15. Hopwood, D., Bowe, S., Hornby, T., & Wilcox, N. (2016). Zcash protocol specification. San Francisco: GitHub.

    Google Scholar 

  16. Huang, P.-C., Lin, C.-C., Wang, Y.-H., & Hsieh, H.-J. (2019). Development of health care system based on wearable devices. In 2019 Prognostics and System Health Management Conference (PHM-Paris) (pp. 249–252).

    Chapter  Google Scholar 

  17. Kang, J., Xiong, Z., Niyato, D., Ye, D., Kim, D. I., & Zhao, J. (2019). Toward secure blockchain-enabled internet of vehicles: Optimising consensus management using reputation and contract theory. IEEE Transactions on Vehicular Technology, 68(3), 2906–2920.

    Article  Google Scholar 

  18. Kim, Y. J., & Hong, C. S. (2019). Blockchain-based node-aware dynamic weighting methods for improving federated learning performance. In 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 1–4). Matsue, Japan.

    Google Scholar 

  19. Lee, S.-H., & Lee, D.-W. (2015). Review on current situations for internet of things. In 2015 7th International Conference on Multimedia, Computer Graphics and Broadcasting (MULGRAB) (pp. 19–21). Jeju, Korea (South).

    Chapter  Google Scholar 

  20. Lytvyn, V., Vysotska, V., Mykhailyshyn, V., Peleshchak, I., Peleshchak, R., & Kohut, I. (2019). Intelligent system of a smart house. In 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT) (pp. 282–287). Lviv, Ukraine.

    Chapter  Google Scholar 

  21. Majeed, U., & Hong, C. S. (2019). Flchain: Federated learning via mec-enabled blockchain network. In 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 1–4). Matsue, Japan.

    Google Scholar 

  22. McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by machine, part I. Communications of the ACM, 3(4), 184–195.

    Article  Google Scholar 

  23. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6(1), 1–10.

    Article  Google Scholar 

  24. Miraz, M. H., Ali, M., Excell, P. S., & Picking, R. (2015). A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IONT). In 2015 Internet Technologies and Applications (ITA) (pp. 219–224).

    Chapter  Google Scholar 

  25. Mishra, S. S., & Rasool, A. (2019). IoT health care monitoring and tracking: A survey. In 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1052–1057). Tirunelveli, India.

    Chapter  Google Scholar 

  26. Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot.

    Google Scholar 

  27. Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., & Jirstrand, M. (2018). A performance evaluation of federated learning algorithms. In Proceedings of the second workshop on distributed infrastructures for deep learning (pp. 1–8). Rennes, France.

    Google Scholar 

  28. Niya, S. R., Schiller, E., Cepilov, I., Maddaloni, F., Aydinli, K., Surbeck, T., et al. (2019). Adaptation of proof-of-stake-based blockchains for IoT data streams. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 15–16). Seoul, Korea (South).

    Chapter  Google Scholar 

  29. Nugroho, H., Harmanto, D., & Al-Absi, H. R. H. (2018). On the development of smart home care: Application of deep learning for pain detection. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) (pp. 612–616). Sarawak, Malaysia.

    Chapter  Google Scholar 

  30. Oh, S. J., Schiele, B., & Fritz, M. (2019). Towards reverse-engineering black-box neural networks. In Explainable AI: Interpreting, explaining and visualising deep learning (pp. 121–144). Springer.

    Chapter  Google Scholar 

  31. Popov, S. (2018). The tangle (2016). Verfügbar: http://www.tangleblog.com/wpcontent/uploads/2016/11/IOTA Whitepaper.pdf . Zugriff am 22.05.2019.

  32. Puthal, D., & Mohanty, S. P. (2018). Proof of authentication: IoT-friendly blockchains. IEEE Potentials, 38(1), 26–29.

    Article  Google Scholar 

  33. Rahulamathavan, Y., Phan, R. C.-W., Rajarajan, M., Misra, S., & Kondoz, A. (2017). Privacy-preserving blockchain based IoT ecosystem using attribute-based encryption. In 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1–6). Bhubaneswar, India.

    Google Scholar 

  34. Reitwiessner, C. (2016). zksnarks in a nutshell. Ethereum Blog, 6, 1–15.

    Google Scholar 

  35. Sankar Bhunia, S. (2015). Adopting internet of things for provisioning health-care. In Adjunct proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2015 ACM international symposium on wearable computers (pp. 533–538). Osaka, Japan.

    Chapter  Google Scholar 

  36. Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M. (2014). Zerocash: Decentralised anonymous payments from Bitcoin. In 2014 IEEE symposium on security and privacy (pp. 459–474). Berkeley, CA, USA.

    Chapter  Google Scholar 

  37. Sheng, M., Jiang, J., Su, B., Tang, Q., Yahya, A. A., & Wang, G. (2016). Short-time activity recognition with wearable sensors using convolutional neural network. In Proceedings of the 15th ACM SIGGRAPH conference on virtual-reality continuum and its applications in industry-volume 1 (pp. 413–416). Zhuhai, China.

    Chapter  Google Scholar 

  38. Singh, M., Singh, A., & Kim, S. (2018). Blockchain: A game changer for securing IoT data. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (pp. 51–55).

    Chapter  Google Scholar 

  39. Thangaraj, M., Ponmalar, P. P., Sujatha, G., & Anuradha, S. (2016). Agent based semantic Internet of Things (IoT) in smart health care. In Proceedings of the 11th international knowledge management in organisations conference on the changing face of knowledge management impacting society (pp. 1–9). Hagen, Germany.

    Google Scholar 

  40. Vidaković, M., Ć osić, S., Ć osić, O., Kaštelan, I., & Velikić, G. (2019). Adding AI to the decision support system used in patient health assessment. In Proceedings of the 13th EAI international conference on pervasive computing technologies for healthcare (pp. 399–402). Trento, Italy.

    Chapter  Google Scholar 

  41. Wang, T., Wu, X., & He, T. (2019). Trustable and automated machine learning running with blockchain and its applications. arXiv preprint arXiv. 1908.05725.

    Google Scholar 

  42. Nguyen, P., Tran, T., Wickramasinghe, N., & Venkatesh, S. (2017). Deepr: A Convolutional Net for Medical Records, in IEEE Journal of Biomedical and Health Informatics, 21(1), 22–30. https://doi.org/10.1109/JBHI.2016.2633963.

    Article  Google Scholar 

  43. Xu, Z., Li, L., & Zou, W. (2019). Exploring federated learning on battery-powered devices. In Proceedings of the ACM Turing Celebration Conference-China (pp. 1–6). Chengdu, China.

    Google Scholar 

  44. Yadav, E. P., Mittal, E. A., & Yadav, H. (2018). IoT: Challenges and issues in Indian perspective. In 2018 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU) (pp. 1–5). Bhimtal, India.

    Google Scholar 

  45. Yang, T., Wolff, F., & Papachristou, C. (2018). Connected car networking. In NAECON 2018-IEEE National Aerospace and Electronics Conference (pp. 60–64). Dayton, OH, USA.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohame Ikbal Nacer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nacer, M.I., Prakoonwit, S., Alarab, I. (2021). The Combination of AI, Blockchain, and the Internet of Things for Patient Relationship Management. In: García Márquez, F.P., Lev, B. (eds) Internet of Things. International Series in Operations Research & Management Science, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-70478-0_3

Download citation

Publish with us

Policies and ethics