Abstract
Gait rehabilitation is a multidisciplinary process that requires the participation and experience of several specialities. Robot-assisted physical rehabilitation, which has a strong component of gait rehabilitation, provides considerable advantages over conventional therapies regarding patient’s motor control, balance, and cardiovascular parameters. However, it is believed that the inclusion of a cognitive approach in these rehabilitation therapies can bring even more benefits to the patients and all other personals involved. Socially Assistive Robotics (SAR) has been used in the last years as a tool to incorporate these cognitive aspects in physical rehabilitation (PR) processes. This chapter explores the basic concepts of social robotics and its role in PR, through the explanation and development of Patient–Robot interfaces. A case study of a robot-assisted PR with Lokomat presents the promising results of including SAR in gait rehabilitation, by improving patient’s motivation, engagement, and overall performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
L.L. Mullins, J.R. Keller, J.M. Chaney, A systems and social cognitive approach to team functioning in physical rehabilitation settings. Rehabilitation Psychology 39(3), 161–178 (1994)
K. Fabel, G. Kempermann, Physical activity and the regulation of neurogenesis in the adult and aging brain. NeuroMolecular Medicine 10, 59–66 (2008)
D. Feil-Seifer, M. Mataric, in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (IEEE, Chicago, IL, USA, 2005), pp. 465–468
C. Breazeal, K. Dautenhahn, T. Kanda, Social robotics, in Springer Handbook of Robotics (Springer International Publishing, 2016), pp. 1935–1971
M.J. Matarić, J. Eriksson, D.J. Feil-Seifer, C.J. Winstein, Socially assistive robotics for post-stroke rehabilitation. J. NeuroEng. Rehab. 4, 5 (2007)
Understanding Social Interaction—Boundless Sociology, https://courses.lumenlearning.com/boundless-sociology/chapter/understanding-social-interaction/. [Online; accessed 23-July-2019]
D. Feil-Seifer, M.J. Matarić, Toward Socially Assistive Robotics For Augmenting Interventions For Children With Autism Spectrum Disorders, Tech. rep., 2008
R. Krauss, Psychology of verbal communication. Int. Encyclopedia Soc. Behav. Sci., 16161–16165 (2004)
J. Casas, N. Cespedes, M. Múnera, C.A. Cifuentes, Chapter One - Human-Robot Interaction for Rehabilitation Scenarios (Academic Press, 2020)
D. Casas-Bocanegra, D. Gomez-Vargas, M.J. Pinto-Bernal, J. Maldonado, M. Munera, A. Villa-Moreno, M.F. Stoelen, T. Belpaeme, C.A. Cifuentes, An open-source social robot based on compliant soft robotics for therapy with children with ASD. Actuators 9(3), 91 (2020)
K. Goris, J. Saldien, I. Vanderniepen, D. Lefeber, The Huggable Robot Probo, a Multi-disciplinary Research Platform, vol. 33 (IEEE, 1970)
A. Shick, Romibo Robot Project: An Open-Source Effort to Develop a Low-Cost Sensory Adaptable Robot for Special Needs Therapy and Education (IEEE, 2013)
Y.H. Wu, C. Fassert, A.S. Rigaud, Designing robots for the elderly: Appearance issue and beyond. Archiv. Gerontol. Geriat. 54, 121–126 (2012)
J. Fink, Anthropomorphism and human likeness in the design of robots and human-robot interaction, in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7621 LNAI (Springer, Berlin, Heidelberg, 2012), pp. 199–208
A.A. Ramírez-Duque, L.F. Aycardi, A. Villa, M. Munera, T. Bastos, T. Belpaeme, A. Frizera-Neto, C.A. Cifuentes, Collaborative and inclusive process with the autism community: A case study in Colombia about social robot design. Int. J. Soc. Robot. 13, 153–167 (2021)
R.S. Lazarus, Emotion and Adaptation (Oxford University Press, 1991)
J.A. Russell, Core affect and the psychological construction of emotion. Physchol Rev. 110(1), 145–172 (2003)
A. Mehrabian, J.A. Russell, An Approach to Environmental Psychology (MIT Press, 1974)
M.L. Hoffman, Toward a comprehensive empathy-based theory of prosocial moral development., in Constructive & Destructive Behavior: Implications for Family, School, & Society (American Psychological Association, 2004), pp. 61–86
I. Leite, S. Mascarenhas, C. Martinho, R. Prada, A. Paiva, The influence of empathy in human-robot relations. Int. J. Human Comput. Stud. 71(3), 250–260 (2012)
B. Gonsior, S. Sosnowski, C. Mayer, J. Blume, B. Radig, D. Wollherr, K. Kuhnlenz, Improving aspects of empathy and subjective performance for HRI through mirroring facial expressions, in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication pp. 350–356 (2011)
C. Breazeal, Cynthia, Social robots: From research to commercialization, in Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction - HRI ’17, pp. 1–1 (2017)
Z. Kasap, N. Magnenat-Thalmann, Towards episodic memory-based long-term affective interaction with a human-like robot, in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 452–457 (2010)
T. Belpaeme, P.E. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B. Kiefer, S. Racioppa, I. Kruijff-Korbayová, G. Athanasopoulos, V. Enescu, R. Looije, M. Neerincx, Y. Demiris, R. Ros-Espinoza, A. Beck, L. Cañamero, A. Hiolle, M. Lewis, I. Baroni, M. Nalin, P. Cosi, G. Paci, F. Tesser, G. Sommavilla, R. Humbert, Multimodal child-robot interaction: Building social bonds. J. Human Robot Interact. 1(2), 33–53 (2013)
E. Tsardoulias, A.L. Symeonidis, P.A. Mitkas, An automatic speech detection architecture for social robot oral interaction, in AM ’15 (2015)
Z. Kasap, N. Magnenat-Thalmann, Building long-term relationships with virtual and robotic characters: The role of remembering. Visual Computer 28, 87–97 (2012)
K. Jokinen, G. Wilcock, Multimodal open-domain conversations with robotic platforms, in Multimodal Behavior Analysis in the Wild: Advances and Challenges (Elsevier, 2018), pp. 9–26
L. Yang, H. Cheng, J. Hao, Y. Ji, Y. Kuang, A survey on media interaction in social robotics, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9315 (Springer, 2015), pp. 181–190
T. Salter, I. Werry, F. Michaud, Going into the wild in child-robot interaction studies: Issues in social robotic development. Intell. Serv. Robot. 1(2), 93–108 (2008)
P. Dhami, S. Moreno, J.F.X. DeSouza, New framework for rehabilitation - fusion of cognitive and physical rehabilitation: the hope for dancing. Front. Psychol. 5, 1478 (2015)
A. Bandura, Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall Series in Social Learning Theory (Prentice-Hall, Englewood Cliffs, NJ, 1986)
B. Irfan, N.C. Gomez, J. Casas, E. Senft, L.F. Gutierrez, M. Rincon-Roncancio, M. Munera, T. Belpaeme, C.A. Cifuentes, Using a Personalised Socially Assistive Robot for Cardiac Rehabilitation: A Long-Term Case Study (IEEE, 2020)
J. Casas, E. Senft, L.F. Gutierrez, M. Rincon-Rocancio, M. Munera, T. Belpaeme, C.A. Cifuentes, Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot., 1–15 (2020)
N. Céspedes, B. Irfan, E. Senft, C.A. Cifuentes, L.F. Gutierrez, M. Rincon-Roncancio, T. Belpaeme, M. Múnera, A socially assistive robot for long-term cardiac rehabilitation in the real world. Front. Neurorobot. 15, 633248 (2021)
M. Bautista, C.A. Cifuentes, M. Munera, Conversational agents for healthcare delivery: Potential solutions to the challenges of the pandemic, in Internet of Medical Things, 1st edn. (CRC Press, 2021), p. 26
J. Fasola, M. Mataric, A socially assistive robot exercise coach for the elderly. J. Human Robot Interact. 2, 3–32 (2013)
J. Li, The benefit of being physically present: A survey of experimental works comparing copresent robots, telepresent robots and virtual agents. Int. J. Human Comput. Stud. 77, 23–37 (2015)
V. Vasco, C. Willemse, P. Chevalier, D. De Tommaso, V. Gower, F. Gramatica, V. Tikhanoff, U. Pattacini, G. Metta, A. Wykowska, Train with me: A study comparing a socially assistive robot and a virtual agent for a rehabilitation task, in Social Robotics, vol. 11876, ed. by M.A. Salichs, S.S. Ge, E.I. Barakova, J.-J. Cabibihan, A.R. Wagner, A. Castro Gonzalez, H. He (Springer International Publishing, Cham, 2019), pp. 453–463
T.W. Bickmore, R.W. Picard, Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput. Human Interact. 12, 293–327 (2005)
C.D. Kidd, C. Breazeal, A robotic weight loss coach, in Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 2, AAAI’07 (AAAI Press, 2007), p. 1985–1986
N. Maclean, P. Pound, A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 50, 495–506 (2000)
A. Tapus, M. Mataric, B. Scassellati, Socially assistive robotics [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14, 35–42 (2007)
K.I. Kang, S. Freedman, M.J. Matarić, M.J. Cunningham, B. Lopez, A hands-off physical therapy assistance robot for cardiac patients, in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 337–340 (2005)
R. Gockley, A. Bruce, J. Forlizzi, M. Michalowski, A. Mundell, S. Rosenthal, B. Sellner, R. Simmons, K. Snipes, A. Schultz, Jue Wang, Designing robots for long-term social interaction, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 1338–1343
J. Fasola, M.J. Matarić, Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proc. IEEE 100(8), 2512–2526 (2012)
S. Sabanovic, C.C. Bennett, Wan-Ling Chang, L. Huber, PARO robot affects diverse interaction modalities in group sensory therapy for older adults with dementia, in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) (IEEE, Seattle, WA, 2013), pp. 1–6
K. Swift-Spong, E. Short, E. Wade, M.J. Mataric, Effects of comparative feedback from a socially assistive robot on self-efficacy in post-stroke rehabilitation, in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE, Singapore, Singapore, 2015), pp. 764–769
R. Looije, F. Cnossen, M. Neerincx, Incorporating Guidelines for Health Assistance into a Socially Intelligent Robot, Tech. rep., 2006
I. Baroni, M. Nalin, P. Baxter, C. Pozzi, E. Oleari, A. Sanna, T. Belpaeme, What a robotic companion could do for a diabetic child, in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (IEEE, 2014), pp. 936–941
M. White, M.V. Radomski, M. Finkelstein, D.A.S. Nilsson, L.I.E. Oddsson, Assistive/socially assistive robotic platform for therapy and recovery: Patient perspectives. Int. J. Telemed. Appl. 2013, 1–6 (2013)
P.L. Wilbourne, E.R. Levensky, Enhancing client motivation to change, in Clinical Strategies for Becoming a Master Psychotherapist (Elsevier, 2006), pp. 11–36
W.H. Organization, Adherence to long term therapies: Evidence for action. WHO (2013)
D.X. Cifu, J.S. Kreutzer, S.A. Kolakowsky-Hayner, J.H. Marwitz, J. Englander, The relationship between therapy intensity and rehabilitative outcomes after traumatic brain injury: a multicenter analysis11no commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Archiv. Phys. Med. Rehab. 84, 1441–1448 (2003)
P. Gadde, H. Kharrazi, H. Patel, K.F. MacDorman, Toward monitoring and increasing exercise adherence in older adults by robotic intervention: A proof of concept study. J. Robot. 2011, 1–11 (2011)
R. Sharma, V.I. Pavlovic, T.S. Huang, Toward multimodal human-computer interface. Proc. IEEE 86(5), 853–869 (1998)
C.A. Cifuentes, A. Frizera, Human-robot interaction strategies for walker-assisted locomotion. Springer Tracts Adv. Robot. 115(September), 105 (2016)
E. Bruno, S. Oussama, K. Frans, E.B. Siciliano, O. Khatib, F. Groen, Springer Tracts in Advanced Robotics, vol. 26 (Springer, 2003)
M.A. Goodrich, A.C. Schultz, Human-robot interaction: A survey. Found. Trends® Human Comput. Interact. 1(3), 203–275 (2008)
M.L. Guha, A. Druin, J.A. Fails, Cooperative inquiry revisited: Reflections of the past and guidelines for the future of intergenerational co-design. Int. J. Child Comput. Interact. 1(1), 14–23 (2013)
A.A. Ramírez-Duque, T. Bastos, M. Munera, C.A. Cifuentes, A. Frizera-Neto, Robot-assisted intervention for children with special needs: A comparative assessment for autism screening. Robot. Autonom. Syst. 127, 103484 (2020)
N. Vallès-Peris, C. Angulo, M. Domènech, Children’s imaginaries of human-robot interaction in healthcare. Int. J. Environ. Res. Public Health 15(5), 970 (2018)
S. Merter, D. Hasırcı, A participatory product design process with children with autism spectrum disorder. Int. J. CoCreat. Des. Arts 14(3), 170–187 (2018)
Y. Maeda Kamitani, Scanning Laser Range Finder Corrector Amended Reason, pp. 1–4 (2009)
A. Aguirre, S.D. Sierra M., M. Múnera, C.A. Cifuentes, Online system for gait parameters estimation using a LRF sensor for assistive devices. IEEE Sensors J., 1 (2020)
Zephyr Technology, HXM Bluetooth API Guide, pp. 1–21 (2011)
J.S. Lara, J. Casas, A. Aguirre, M. Munera, M. Rincon-Roncancio, B. Irfan, E. Senft, T. Belpaeme, C.A. Cifuentes, Human-Robot Sensor Interface for Cardiac Rehabilitation (IEEE, 2017)
R. Shafer, Chapter 7: The Cervical Spine, 2nd edn. (Wiliams & Wilkins, 1987)
Invensense, MPU-9150 Datasheet, vol. 1(408), pp. 1–50 (2013)
J. Scherr, B. Wolfarth, J.W. Christle, A. Pressler, S. Wagenpfeil, M. Halle, Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 113, 147–155 (2013)
WHO, T. Dua, A. Janca, A. Muscetta, Public health principles and neurological disorders. Neurol. Disord. Public Health Challen. 2, 7–25 (2006)
S.B. O’Sullivan, T.J. Schmitz, G.D. Fulk, Physical Rehabilitation (F.A. Davis, 2013)
L.L. Stanley Fisher, A. Trasher, Robot-Assisted Gait Training for Patients with Hemiparesis Due to stroke (2011)
G.L. Shahid Hussain, S. QuanXie, Robot assisted treadmill training: Mechanisms and training strategies. Med. Eng. Phys. 33, 527–533 (2011)
M. Munera, A. Marroquin, L. Jimenez, J.S. Lara, C. Gomez, S. Rodriguez, L.E. Rodriguez, C.A. Cifuentes, Lokomat Therapy in Colombia: Current State and Cognitive Aspects (IEEE, 2017)
A. Mayr, M. Kofler, E. Quirbach, H. Matzak, K. Fröhlich, L. Saltuari, Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehab. Neural Repair 21(4), 307–314 (2007)
R. Banz, M. Bolliger, G. Colombo, V. Dietz, L. Lunenburger, Computerized visual feedback: An adjunct to robotic-assisted gait training. Physical Therapy 88, 1135–1145 (2008)
D.-H. Bang, W.-S. Shin, Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. NeuroRehabilitation 38(4), 343–349 (2016)
J.A. Casas, N. Céspedes, C.A. Cifuentes, L.F. Gutierrez, M. Rincón-Roncancio, M. Múnera, Expectation vs. reality: Attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. (Switzerland) 9(21), 4651 (2019)
N. Céspedes, D. Raigoso, M. Múnera, C.A. Cifuentes, Long-term social human-robot interaction for neurorehabilitation: Robots as a tool to support gait therapy in the pandemic. Front. Neurorob. 15, 10 (2021)
N. Céspedes, M. Múnera, C. Gómez, C.A. Cifuentes, Social human-robot interaction for gait rehabilitation. IEEE Trans. Neural Syst. Rehab. Eng. 28(6), 1299–1307 (2020)
F. Wilcoxon, Individual comparisons by ranking methods. Biometrics Bulletin 1, 80 (1945)
D. Raigoso, N. Céspedes, C. Cifuentes, A.J. del Ama, M. Munera, A survey on socially assistive robotics: Clinicians’ and patients’ perception of a social robot within gait rehabilitation therapies. Brain Sciences 11(6), 738 (2021)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Múnera, M., Aycardi, L.F., Cespedes, N., Casas, J., Cifuentes, C.A. (2022). Socially Assistive Robotics for Gait Rehabilitation. In: Interfacing Humans and Robots for Gait Assistance and Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-030-79630-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-79630-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79629-7
Online ISBN: 978-3-030-79630-3
eBook Packages: EngineeringEngineering (R0)