[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Socially Assistive Robotics for Gait Rehabilitation

  • Chapter
  • First Online:
Interfacing Humans and Robots for Gait Assistance and Rehabilitation

Abstract

Gait rehabilitation is a multidisciplinary process that requires the participation and experience of several specialities. Robot-assisted physical rehabilitation, which has a strong component of gait rehabilitation, provides considerable advantages over conventional therapies regarding patient’s motor control, balance, and cardiovascular parameters. However, it is believed that the inclusion of a cognitive approach in these rehabilitation therapies can bring even more benefits to the patients and all other personals involved. Socially Assistive Robotics (SAR) has been used in the last years as a tool to incorporate these cognitive aspects in physical rehabilitation (PR) processes. This chapter explores the basic concepts of social robotics and its role in PR, through the explanation and development of Patient–Robot interfaces. A case study of a robot-assisted PR with Lokomat presents the promising results of including SAR in gait rehabilitation, by improving patient’s motivation, engagement, and overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 12.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.L. Mullins, J.R. Keller, J.M. Chaney, A systems and social cognitive approach to team functioning in physical rehabilitation settings. Rehabilitation Psychology 39(3), 161–178 (1994)

    Article  Google Scholar 

  2. K. Fabel, G. Kempermann, Physical activity and the regulation of neurogenesis in the adult and aging brain. NeuroMolecular Medicine 10, 59–66 (2008)

    Article  Google Scholar 

  3. D. Feil-Seifer, M. Mataric, in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (IEEE, Chicago, IL, USA, 2005), pp. 465–468

    Google Scholar 

  4. C. Breazeal, K. Dautenhahn, T. Kanda, Social robotics, in Springer Handbook of Robotics (Springer International Publishing, 2016), pp. 1935–1971

    Google Scholar 

  5. M.J. Matarić, J. Eriksson, D.J. Feil-Seifer, C.J. Winstein, Socially assistive robotics for post-stroke rehabilitation. J. NeuroEng. Rehab. 4, 5 (2007)

    Article  Google Scholar 

  6. Understanding Social Interaction—Boundless Sociology, https://courses.lumenlearning.com/boundless-sociology/chapter/understanding-social-interaction/. [Online; accessed 23-July-2019]

  7. D. Feil-Seifer, M.J. Matarić, Toward Socially Assistive Robotics For Augmenting Interventions For Children With Autism Spectrum Disorders, Tech. rep., 2008

    Google Scholar 

  8. R. Krauss, Psychology of verbal communication. Int. Encyclopedia Soc. Behav. Sci., 16161–16165 (2004)

    Google Scholar 

  9. J. Casas, N. Cespedes, M. Múnera, C.A. Cifuentes, Chapter One - Human-Robot Interaction for Rehabilitation Scenarios (Academic Press, 2020)

    Google Scholar 

  10. D. Casas-Bocanegra, D. Gomez-Vargas, M.J. Pinto-Bernal, J. Maldonado, M. Munera, A. Villa-Moreno, M.F. Stoelen, T. Belpaeme, C.A. Cifuentes, An open-source social robot based on compliant soft robotics for therapy with children with ASD. Actuators 9(3), 91 (2020)

    Google Scholar 

  11. K. Goris, J. Saldien, I. Vanderniepen, D. Lefeber, The Huggable Robot Probo, a Multi-disciplinary Research Platform, vol. 33 (IEEE, 1970)

    Google Scholar 

  12. A. Shick, Romibo Robot Project: An Open-Source Effort to Develop a Low-Cost Sensory Adaptable Robot for Special Needs Therapy and Education (IEEE, 2013)

    Google Scholar 

  13. Y.H. Wu, C. Fassert, A.S. Rigaud, Designing robots for the elderly: Appearance issue and beyond. Archiv. Gerontol. Geriat. 54, 121–126 (2012)

    Article  Google Scholar 

  14. J. Fink, Anthropomorphism and human likeness in the design of robots and human-robot interaction, in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7621 LNAI (Springer, Berlin, Heidelberg, 2012), pp. 199–208

    Google Scholar 

  15. A.A. Ramírez-Duque, L.F. Aycardi, A. Villa, M. Munera, T. Bastos, T. Belpaeme, A. Frizera-Neto, C.A. Cifuentes, Collaborative and inclusive process with the autism community: A case study in Colombia about social robot design. Int. J. Soc. Robot. 13, 153–167 (2021)

    Article  Google Scholar 

  16. R.S. Lazarus, Emotion and Adaptation (Oxford University Press, 1991)

    Google Scholar 

  17. J.A. Russell, Core affect and the psychological construction of emotion. Physchol Rev. 110(1), 145–172 (2003)

    Google Scholar 

  18. A. Mehrabian, J.A. Russell, An Approach to Environmental Psychology (MIT Press, 1974)

    Google Scholar 

  19. M.L. Hoffman, Toward a comprehensive empathy-based theory of prosocial moral development., in Constructive & Destructive Behavior: Implications for Family, School, & Society (American Psychological Association, 2004), pp. 61–86

    Google Scholar 

  20. I. Leite, S. Mascarenhas, C. Martinho, R. Prada, A. Paiva, The influence of empathy in human-robot relations. Int. J. Human Comput. Stud. 71(3), 250–260 (2012)

    Article  Google Scholar 

  21. B. Gonsior, S. Sosnowski, C. Mayer, J. Blume, B. Radig, D. Wollherr, K. Kuhnlenz, Improving aspects of empathy and subjective performance for HRI through mirroring facial expressions, in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication pp. 350–356 (2011)

    Google Scholar 

  22. C. Breazeal, Cynthia, Social robots: From research to commercialization, in Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction - HRI ’17, pp. 1–1 (2017)

    Google Scholar 

  23. Z. Kasap, N. Magnenat-Thalmann, Towards episodic memory-based long-term affective interaction with a human-like robot, in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 452–457 (2010)

    Google Scholar 

  24. T. Belpaeme, P.E. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B. Kiefer, S. Racioppa, I. Kruijff-Korbayová, G. Athanasopoulos, V. Enescu, R. Looije, M. Neerincx, Y. Demiris, R. Ros-Espinoza, A. Beck, L. Cañamero, A. Hiolle, M. Lewis, I. Baroni, M. Nalin, P. Cosi, G. Paci, F. Tesser, G. Sommavilla, R. Humbert, Multimodal child-robot interaction: Building social bonds. J. Human Robot Interact. 1(2), 33–53 (2013)

    Article  Google Scholar 

  25. E. Tsardoulias, A.L. Symeonidis, P.A. Mitkas, An automatic speech detection architecture for social robot oral interaction, in AM ’15 (2015)

    Google Scholar 

  26. Z. Kasap, N. Magnenat-Thalmann, Building long-term relationships with virtual and robotic characters: The role of remembering. Visual Computer 28, 87–97 (2012)

    Article  Google Scholar 

  27. K. Jokinen, G. Wilcock, Multimodal open-domain conversations with robotic platforms, in Multimodal Behavior Analysis in the Wild: Advances and Challenges (Elsevier, 2018), pp. 9–26

    Google Scholar 

  28. L. Yang, H. Cheng, J. Hao, Y. Ji, Y. Kuang, A survey on media interaction in social robotics, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9315 (Springer, 2015), pp. 181–190

    Google Scholar 

  29. T. Salter, I. Werry, F. Michaud, Going into the wild in child-robot interaction studies: Issues in social robotic development. Intell. Serv. Robot. 1(2), 93–108 (2008)

    Article  Google Scholar 

  30. P. Dhami, S. Moreno, J.F.X. DeSouza, New framework for rehabilitation - fusion of cognitive and physical rehabilitation: the hope for dancing. Front. Psychol. 5, 1478 (2015)

    Article  Google Scholar 

  31. A. Bandura, Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall Series in Social Learning Theory (Prentice-Hall, Englewood Cliffs, NJ, 1986)

    Google Scholar 

  32. B. Irfan, N.C. Gomez, J. Casas, E. Senft, L.F. Gutierrez, M. Rincon-Roncancio, M. Munera, T. Belpaeme, C.A. Cifuentes, Using a Personalised Socially Assistive Robot for Cardiac Rehabilitation: A Long-Term Case Study (IEEE, 2020)

    Google Scholar 

  33. J. Casas, E. Senft, L.F. Gutierrez, M. Rincon-Rocancio, M. Munera, T. Belpaeme, C.A. Cifuentes, Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot., 1–15 (2020)

    Google Scholar 

  34. N. Céspedes, B. Irfan, E. Senft, C.A. Cifuentes, L.F. Gutierrez, M. Rincon-Roncancio, T. Belpaeme, M. Múnera, A socially assistive robot for long-term cardiac rehabilitation in the real world. Front. Neurorobot. 15, 633248 (2021)

    Article  Google Scholar 

  35. M. Bautista, C.A. Cifuentes, M. Munera, Conversational agents for healthcare delivery: Potential solutions to the challenges of the pandemic, in Internet of Medical Things, 1st edn. (CRC Press, 2021), p. 26

    Google Scholar 

  36. J. Fasola, M. Mataric, A socially assistive robot exercise coach for the elderly. J. Human Robot Interact. 2, 3–32 (2013)

    Article  Google Scholar 

  37. J. Li, The benefit of being physically present: A survey of experimental works comparing copresent robots, telepresent robots and virtual agents. Int. J. Human Comput. Stud. 77, 23–37 (2015)

    Article  Google Scholar 

  38. V. Vasco, C. Willemse, P. Chevalier, D. De Tommaso, V. Gower, F. Gramatica, V. Tikhanoff, U. Pattacini, G. Metta, A. Wykowska, Train with me: A study comparing a socially assistive robot and a virtual agent for a rehabilitation task, in Social Robotics, vol. 11876, ed. by M.A. Salichs, S.S. Ge, E.I. Barakova, J.-J. Cabibihan, A.R. Wagner, A. Castro Gonzalez, H. He (Springer International Publishing, Cham, 2019), pp. 453–463

    Chapter  Google Scholar 

  39. T.W. Bickmore, R.W. Picard, Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput. Human Interact. 12, 293–327 (2005)

    Article  Google Scholar 

  40. C.D. Kidd, C. Breazeal, A robotic weight loss coach, in Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 2, AAAI’07 (AAAI Press, 2007), p. 1985–1986

    Google Scholar 

  41. N. Maclean, P. Pound, A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 50, 495–506 (2000)

    Article  Google Scholar 

  42. A. Tapus, M. Mataric, B. Scassellati, Socially assistive robotics [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14, 35–42 (2007)

    Article  Google Scholar 

  43. K.I. Kang, S. Freedman, M.J. Matarić, M.J. Cunningham, B. Lopez, A hands-off physical therapy assistance robot for cardiac patients, in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 337–340 (2005)

    Google Scholar 

  44. R. Gockley, A. Bruce, J. Forlizzi, M. Michalowski, A. Mundell, S. Rosenthal, B. Sellner, R. Simmons, K. Snipes, A. Schultz, Jue Wang, Designing robots for long-term social interaction, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 1338–1343

    Google Scholar 

  45. J. Fasola, M.J. Matarić, Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proc. IEEE 100(8), 2512–2526 (2012)

    Article  Google Scholar 

  46. S. Sabanovic, C.C. Bennett, Wan-Ling Chang, L. Huber, PARO robot affects diverse interaction modalities in group sensory therapy for older adults with dementia, in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) (IEEE, Seattle, WA, 2013), pp. 1–6

    Google Scholar 

  47. K. Swift-Spong, E. Short, E. Wade, M.J. Mataric, Effects of comparative feedback from a socially assistive robot on self-efficacy in post-stroke rehabilitation, in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE, Singapore, Singapore, 2015), pp. 764–769

    Google Scholar 

  48. R. Looije, F. Cnossen, M. Neerincx, Incorporating Guidelines for Health Assistance into a Socially Intelligent Robot, Tech. rep., 2006

    Google Scholar 

  49. I. Baroni, M. Nalin, P. Baxter, C. Pozzi, E. Oleari, A. Sanna, T. Belpaeme, What a robotic companion could do for a diabetic child, in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (IEEE, 2014), pp. 936–941

    Google Scholar 

  50. M. White, M.V. Radomski, M. Finkelstein, D.A.S. Nilsson, L.I.E. Oddsson, Assistive/socially assistive robotic platform for therapy and recovery: Patient perspectives. Int. J. Telemed. Appl. 2013, 1–6 (2013)

    Google Scholar 

  51. P.L. Wilbourne, E.R. Levensky, Enhancing client motivation to change, in Clinical Strategies for Becoming a Master Psychotherapist (Elsevier, 2006), pp. 11–36

    Google Scholar 

  52. W.H. Organization, Adherence to long term therapies: Evidence for action. WHO (2013)

    Google Scholar 

  53. D.X. Cifu, J.S. Kreutzer, S.A. Kolakowsky-Hayner, J.H. Marwitz, J. Englander, The relationship between therapy intensity and rehabilitative outcomes after traumatic brain injury: a multicenter analysis11no commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Archiv. Phys. Med. Rehab. 84, 1441–1448 (2003)

    Article  Google Scholar 

  54. P. Gadde, H. Kharrazi, H. Patel, K.F. MacDorman, Toward monitoring and increasing exercise adherence in older adults by robotic intervention: A proof of concept study. J. Robot. 2011, 1–11 (2011)

    Article  Google Scholar 

  55. R. Sharma, V.I. Pavlovic, T.S. Huang, Toward multimodal human-computer interface. Proc. IEEE 86(5), 853–869 (1998)

    Article  Google Scholar 

  56. C.A. Cifuentes, A. Frizera, Human-robot interaction strategies for walker-assisted locomotion. Springer Tracts Adv. Robot. 115(September), 105 (2016)

    Google Scholar 

  57. E. Bruno, S. Oussama, K. Frans, E.B. Siciliano, O. Khatib, F. Groen, Springer Tracts in Advanced Robotics, vol. 26 (Springer, 2003)

    Google Scholar 

  58. M.A. Goodrich, A.C. Schultz, Human-robot interaction: A survey. Found. Trends® Human Comput. Interact. 1(3), 203–275 (2008)

    Google Scholar 

  59. M.L. Guha, A. Druin, J.A. Fails, Cooperative inquiry revisited: Reflections of the past and guidelines for the future of intergenerational co-design. Int. J. Child Comput. Interact. 1(1), 14–23 (2013)

    Article  Google Scholar 

  60. A.A. Ramírez-Duque, T. Bastos, M. Munera, C.A. Cifuentes, A. Frizera-Neto, Robot-assisted intervention for children with special needs: A comparative assessment for autism screening. Robot. Autonom. Syst. 127, 103484 (2020)

    Article  Google Scholar 

  61. N. Vallès-Peris, C. Angulo, M. Domènech, Children’s imaginaries of human-robot interaction in healthcare. Int. J. Environ. Res. Public Health 15(5), 970 (2018)

    Google Scholar 

  62. S. Merter, D. Hasırcı, A participatory product design process with children with autism spectrum disorder. Int. J. CoCreat. Des. Arts 14(3), 170–187 (2018)

    Google Scholar 

  63. Y. Maeda Kamitani, Scanning Laser Range Finder Corrector Amended Reason, pp. 1–4 (2009)

    Google Scholar 

  64. A. Aguirre, S.D. Sierra M., M. Múnera, C.A. Cifuentes, Online system for gait parameters estimation using a LRF sensor for assistive devices. IEEE Sensors J., 1 (2020)

    Google Scholar 

  65. Zephyr Technology, HXM Bluetooth API Guide, pp. 1–21 (2011)

    Google Scholar 

  66. J.S. Lara, J. Casas, A. Aguirre, M. Munera, M. Rincon-Roncancio, B. Irfan, E. Senft, T. Belpaeme, C.A. Cifuentes, Human-Robot Sensor Interface for Cardiac Rehabilitation (IEEE, 2017)

    Google Scholar 

  67. R. Shafer, Chapter 7: The Cervical Spine, 2nd edn. (Wiliams & Wilkins, 1987)

    Google Scholar 

  68. Invensense, MPU-9150 Datasheet, vol. 1(408), pp. 1–50 (2013)

    Google Scholar 

  69. J. Scherr, B. Wolfarth, J.W. Christle, A. Pressler, S. Wagenpfeil, M. Halle, Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 113, 147–155 (2013)

    Article  Google Scholar 

  70. WHO, T. Dua, A. Janca, A. Muscetta, Public health principles and neurological disorders. Neurol. Disord. Public Health Challen. 2, 7–25 (2006)

    Google Scholar 

  71. S.B. O’Sullivan, T.J. Schmitz, G.D. Fulk, Physical Rehabilitation (F.A. Davis, 2013)

    Google Scholar 

  72. L.L. Stanley Fisher, A. Trasher, Robot-Assisted Gait Training for Patients with Hemiparesis Due to stroke (2011)

    Google Scholar 

  73. G.L. Shahid Hussain, S. QuanXie, Robot assisted treadmill training: Mechanisms and training strategies. Med. Eng. Phys. 33, 527–533 (2011)

    Article  Google Scholar 

  74. M. Munera, A. Marroquin, L. Jimenez, J.S. Lara, C. Gomez, S. Rodriguez, L.E. Rodriguez, C.A. Cifuentes, Lokomat Therapy in Colombia: Current State and Cognitive Aspects (IEEE, 2017)

    Google Scholar 

  75. A. Mayr, M. Kofler, E. Quirbach, H. Matzak, K. Fröhlich, L. Saltuari, Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehab. Neural Repair 21(4), 307–314 (2007)

    Article  Google Scholar 

  76. R. Banz, M. Bolliger, G. Colombo, V. Dietz, L. Lunenburger, Computerized visual feedback: An adjunct to robotic-assisted gait training. Physical Therapy 88, 1135–1145 (2008)

    Article  Google Scholar 

  77. D.-H. Bang, W.-S. Shin, Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. NeuroRehabilitation 38(4), 343–349 (2016)

    Article  Google Scholar 

  78. J.A. Casas, N. Céspedes, C.A. Cifuentes, L.F. Gutierrez, M. Rincón-Roncancio, M. Múnera, Expectation vs. reality: Attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. (Switzerland) 9(21), 4651 (2019)

    Google Scholar 

  79. N. Céspedes, D. Raigoso, M. Múnera, C.A. Cifuentes, Long-term social human-robot interaction for neurorehabilitation: Robots as a tool to support gait therapy in the pandemic. Front. Neurorob. 15, 10 (2021)

    Google Scholar 

  80. N. Céspedes, M. Múnera, C. Gómez, C.A. Cifuentes, Social human-robot interaction for gait rehabilitation. IEEE Trans. Neural Syst. Rehab. Eng. 28(6), 1299–1307 (2020)

    Article  Google Scholar 

  81. F. Wilcoxon, Individual comparisons by ranking methods. Biometrics Bulletin 1, 80 (1945)

    Article  Google Scholar 

  82. D. Raigoso, N. Céspedes, C. Cifuentes, A.J. del Ama, M. Munera, A survey on socially assistive robotics: Clinicians’ and patients’ perception of a social robot within gait rehabilitation therapies. Brain Sciences 11(6), 738 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cifuentes .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Múnera, M., Aycardi, L.F., Cespedes, N., Casas, J., Cifuentes, C.A. (2022). Socially Assistive Robotics for Gait Rehabilitation. In: Interfacing Humans and Robots for Gait Assistance and Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-030-79630-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79630-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79629-7

  • Online ISBN: 978-3-030-79630-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics