[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Swarm Unit Digital Control System Simulation

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12689))

Included in the following conference series:

Abstract

Physical swarm unit, as an object under digital control is analyzed. It is shown, that Von Neumann digital controller, as a physical device, has new properties in comparison with analogue controllers, namely due to sequentially interpretation of control algorithm there are time delays between quests to sensors and actuators, that cause influence on a swarm unit performance as a whole. Flowchart of digital control system is worked out and closed loops transfer function, which takes into account real properties of Von Neumann digital controller, is obtained. The method of time lags estimation, based on notion the interpretation of arbitrary complexity cyclic algorithm as semi-Markov process, is proposed. Theoretical postulates are confirmed by simulation of two-loop digital control system functioning. Results of simulation emphatically show how data skew and feedback lag affect on swarm unit control dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouallègue, S., Haggège, J., Ayadi, M., Benrejeb, M.: PID-type fuzzy logic controller tuning based on particle swarm optimization. Eng. Appl. Artif. Intell. 25(3), 484–493 (2012). https://doi.org/10.1016/j.engappai.2011.09.018

    Article  Google Scholar 

  2. Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006). https://doi.org/10.5019/j.ijcir.2006.68

    Article  MathSciNet  Google Scholar 

  3. Babishin, V., Taghipour, S.: Optimal maintenance policy for multicomponent systems with periodic and opportunistic inspections and preventive replacements. Appl. Math. Model. 40(23), 10480–10505 (2016). https://doi.org/10.1016/j.apm.2016.07.019

    Article  MathSciNet  MATH  Google Scholar 

  4. Larkin, E., Antonov, M.: On assessing the temporal characteristics of reaching the milestone by a swarm. In: Tan, Y., Shi, Y., Tuba, M. (eds.) ICSI 2020. LNCS, vol. 12145, pp. 46–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53956-6_5

    Chapter  Google Scholar 

  5. Landau, I.D., Zito, G.: Digital Control Systems, Design, Identification and Implementation, p. 484. Springer, Heidelberg (2006)

    Google Scholar 

  6. Aström, J., Wittenmark, B.: Computer Controlled Systems: Theory and Design, p. 557. Tsinghua University Press. Prentice Hall (2002)

    Google Scholar 

  7. Fadali, M.S., Visioli, A.: Digital Control Engineering: Analysis and Design, pp. 239–272. Elsevier Inc. (2013)

    Google Scholar 

  8. Larkin, E.V., Ivutin, A.N.: Estimation of latency in embedded real-time systems. In: 3rd Meditteranean Conference on Embedded Computing (MECO-2014), Budva, Montenegro, pp. 236–239 (2014)

    Google Scholar 

  9. Auslander, D.M., Ridgely, J.R., Jones, J.C.: Real-time software for implementation of feedback control. In: Levine, W.S. (ed.) The Control Handbook. Control System Fundamentals, pp. 16-1–16-32. CRC Press. Taylor and Francis Group (2017)

    Google Scholar 

  10. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling, Simulation and Control of Mechatronic Systems, p. 636. Hoboken, Willey (2012)

    Book  Google Scholar 

  11. Bielecki, T., Jakubowski, J., Niewęgłowski, M.: Conditional Markov chains: properties, construction and structured dependence. Stochast. Process. Appl. 127(4), 1125–1170 (2017). https://doi.org/10.1016/j.spa.2016.07.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Ching, W.K., Huang, X., Ng, M.K., Siu, T.K.: Markov Chains: Models, Algorithms and Applications. International Series in Operations Research & Management Science, vol. 189, p. 241. Springer, New York (2013)

    Google Scholar 

  13. Howard, R.A.: Dynamic Probabilistic Systems, vol. 1: Markov Models. vol. II: Semi-Markov and Decision Processes. Courier Corporation (2012)

    Google Scholar 

  14. Janssen, J., Manca, R.: Applied Semi-Markov Processes, p. 310. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  15. Schiff, J.L.: The Laplace Transform: Theory and Applications, p. 233. Springer, New York (1991)

    MATH  Google Scholar 

  16. Li, J., Farquharson, C.G., Hu, X.: Three effective inverse Laplace transform algorithms for computing time -domain electromagnetic responses. Geophysics 81(2), E75–E90 (2015)

    Google Scholar 

  17. Arnold, K.A.: Timing analysis in embedded systems. In: Ganssler, J., Arnold, K., et al. (eds.) Embedded Hardware, pp. 239–272. Elsevier Inc. (2008)

    Google Scholar 

  18. Balsamo, S., Harrison, P., Marin, A.: Methodological construction of product-form stochastic Petri nets for performance evaluation. J. Syst. Softw. 85(7), 1520–1539 (2012). https://doi.org/10.1016/j.jss.2011.11.1042

    Article  Google Scholar 

  19. Larkin, E., Akimenko, T., Privalov, A.: Synchronized swarm operation. In: Tan, Y., Shi, Y., Tuba, M. (eds.) Advances in Swarm Intelligence, ICSI 2020, pp. 15–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53956-6_2

    Chapter  Google Scholar 

  20. Kobayashi, H., Marl, B.L., Turin, W.: Probability, Random Processes and Statistical Analysis, p. 812. Cambridge University Press (2012)

    Google Scholar 

  21. Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larkin, E., Privalov, A., Akimenko, T. (2021). Swarm Unit Digital Control System Simulation. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12689. Springer, Cham. https://doi.org/10.1007/978-3-030-78743-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78743-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78742-4

  • Online ISBN: 978-3-030-78743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics