Abstract
Retrospective gated cardiac computed tomography (CCT) images can provide high contrast and resolution images of the heart throughout the cardiac cycle. Feature tracking in retrospective CCT images using the temporal sparse free-form deformations (TSFFDs) registration method has previously been optimised for the left ventricle (LV). However, there is limited work on optimising nonrigid registration methods for feature tracking in the left atria (LA). This paper systematically optimises the sparsity weight (SW) and bending energy (BE) as two hyperparameters of the TSFFD method to track the LA endocardium from end-diastole (ED) to end-systole (ES) using 10-frame retrospective gated CCT images. The effect of two different control point (CP) grid resolutions was also investigated. TSFFD optimisation was achieved using the average surface distance (ASD), directed Hausdorff distance (DHD) and Dice score between the registered and ground truth surface meshes and segmentations at ES. For baseline comparison, the configuration optimised for LV feature tracking gave errors across the cohort of 0.826 ± 0.172 mm ASD, 5.882 ± 1.524 mm DHD, and 0.912 ± 0.033 Dice score. Optimising the SW and BE hyperparameters improved the TSFFD performance in tracking LA features, with case specific optimisations giving errors across the cohort of 0.750 ± 0.144 mm ASD, 5.096 ± 1.246 mm DHD, and 0.919 ± 0.029 Dice score. Increasing the CP resolution and optimising the SW and BE further improved tracking performance, with case specific optimisation errors of 0.372 ± 0.051 mm ASD, 2.739 ± 0.843 mm DHD and 0.949 ± 0.018 Dice score across the cohort. We therefore show LA feature tracking using TSFFDs is improved through a chamber-specific optimised configuration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/tmi.2019.2897538
Cochet, H., et al.: Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population. J. Cardiovasc. Electrophysiol 26(5), 484–492 (2015). https://doi.org/10.1111/jce.12651
Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32(7), 1239–1248 (2013). https://doi.org/10.1109/TMI.2013.2246577
Lacalzada-Almeida, J., Garciá-Niebla, J.: How to detect atrial fibrosis Journal. J. Geriatric Cardiol. (2017)
Myronenko, A., Song, X.: Point set registration: coherent point drifts. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46
Neic, A., Gsell, M.A., Karabelas, E., Prassl, A.J., Plank, G.: Automating image-based mesh generation and manipulation tasks in cardiac modeling workflows using Meshtool. SoftwareX (2020). https://doi.org/10.1016/j.softx.2020.100454
Platonov, P.G.: Atrial fibrosis: an obligatory component of arrhythmia mechanisms in atrial fibrillation? (2017). https://doi.org/10.11909/j.issn.1671-5411.2017.04.008
Pourmorteza, A., Chen, M.Y., van der Pals, J., Arai, A.E., McVeigh, E.R.: Correlation of CT-based regional cardiac function (SQUEEZ) with myocardial strain calculated from tagged MRI: an experimental study. Int. J. Cardiovasc. Imaging 32(5), 817–823 (2015). https://doi.org/10.1007/s10554-015-0831-7
Pourmorteza, A., Schuleri, K.H., Herzka, D.A., Lardo, A.C., McVeigh, E.R.: A new method for cardiac computed tomography regional function assessment: stretch quantifier for endocardial engraved zones (SQUEEZ). Circ. Cardiovasc. Imaging (2012). https://doi.org/10.1161/CIRCIMAGING.111.970061
Razeghi, O., et al.: Hyperparameter optimisation and validation of registration algorithms for measuring regional ventricular deformation using retrospective gated computed tomography images. Nat. Sci. Rep. 11(1), 5718 (2021)
Razeghi, O., et al.: CemrgApp: an interactive medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research. SoftwareX 12 (2020). https://doi.org/10.1016/j.softx.2020.100570
Schotten, U., Verheule, S., Kirchhof, P., Goette, A.: Pathophysiological mechanisms of atrial fibrillation: a translational appraisal (2011). https://doi.org/10.1152/physrev.00031.2009
Shi, W., et al.: Temporal sparse free-form deformations. Med. Image Anal. 17(7), 779–789 (2013). https://doi.org/10.1016/j.media.2013.04.010
Tobon-Gomez, C., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015). https://doi.org/10.1109/TMI.2015.2398818
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sillett, C. et al. (2021). Optimisation of Left Atrial Feature Tracking Using Retrospective Gated Computed Tomography Images. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-78710-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78709-7
Online ISBN: 978-3-030-78710-3
eBook Packages: Computer ScienceComputer Science (R0)