[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimisation of Left Atrial Feature Tracking Using Retrospective Gated Computed Tomography Images

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Abstract

Retrospective gated cardiac computed tomography (CCT) images can provide high contrast and resolution images of the heart throughout the cardiac cycle. Feature tracking in retrospective CCT images using the temporal sparse free-form deformations (TSFFDs) registration method has previously been optimised for the left ventricle (LV). However, there is limited work on optimising nonrigid registration methods for feature tracking in the left atria (LA). This paper systematically optimises the sparsity weight (SW) and bending energy (BE) as two hyperparameters of the TSFFD method to track the LA endocardium from end-diastole (ED) to end-systole (ES) using 10-frame retrospective gated CCT images. The effect of two different control point (CP) grid resolutions was also investigated. TSFFD optimisation was achieved using the average surface distance (ASD), directed Hausdorff distance (DHD) and Dice score between the registered and ground truth surface meshes and segmentations at ES. For baseline comparison, the configuration optimised for LV feature tracking gave errors across the cohort of 0.826 ± 0.172 mm ASD, 5.882 ± 1.524 mm DHD, and 0.912 ± 0.033 Dice score. Optimising the SW and BE hyperparameters improved the TSFFD performance in tracking LA features, with case specific optimisations giving errors across the cohort of 0.750 ± 0.144 mm ASD, 5.096 ± 1.246 mm DHD, and 0.919 ± 0.029 Dice score. Increasing the CP resolution and optimising the SW and BE further improved tracking performance, with case specific optimisation errors of 0.372 ± 0.051 mm ASD, 2.739 ± 0.843 mm DHD and 0.949 ± 0.018 Dice score across the cohort. We therefore show LA feature tracking using TSFFDs is improved through a chamber-specific optimised configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/tmi.2019.2897538

    Article  Google Scholar 

  2. Cochet, H., et al.: Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population. J. Cardiovasc. Electrophysiol 26(5), 484–492 (2015). https://doi.org/10.1111/jce.12651

    Article  Google Scholar 

  3. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32(7), 1239–1248 (2013). https://doi.org/10.1109/TMI.2013.2246577

    Article  Google Scholar 

  4. Lacalzada-Almeida, J., Garciá-Niebla, J.: How to detect atrial fibrosis Journal. J. Geriatric Cardiol. (2017)

    Google Scholar 

  5. Myronenko, A., Song, X.: Point set registration: coherent point drifts. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46

    Article  Google Scholar 

  6. Neic, A., Gsell, M.A., Karabelas, E., Prassl, A.J., Plank, G.: Automating image-based mesh generation and manipulation tasks in cardiac modeling workflows using Meshtool. SoftwareX (2020). https://doi.org/10.1016/j.softx.2020.100454

  7. Platonov, P.G.: Atrial fibrosis: an obligatory component of arrhythmia mechanisms in atrial fibrillation? (2017). https://doi.org/10.11909/j.issn.1671-5411.2017.04.008

  8. Pourmorteza, A., Chen, M.Y., van der Pals, J., Arai, A.E., McVeigh, E.R.: Correlation of CT-based regional cardiac function (SQUEEZ) with myocardial strain calculated from tagged MRI: an experimental study. Int. J. Cardiovasc. Imaging 32(5), 817–823 (2015). https://doi.org/10.1007/s10554-015-0831-7

    Article  Google Scholar 

  9. Pourmorteza, A., Schuleri, K.H., Herzka, D.A., Lardo, A.C., McVeigh, E.R.: A new method for cardiac computed tomography regional function assessment: stretch quantifier for endocardial engraved zones (SQUEEZ). Circ. Cardiovasc. Imaging (2012). https://doi.org/10.1161/CIRCIMAGING.111.970061

  10. Razeghi, O., et al.: Hyperparameter optimisation and validation of registration algorithms for measuring regional ventricular deformation using retrospective gated computed tomography images. Nat. Sci. Rep. 11(1), 5718 (2021)

    Article  Google Scholar 

  11. Razeghi, O., et al.: CemrgApp: an interactive medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research. SoftwareX 12 (2020). https://doi.org/10.1016/j.softx.2020.100570

  12. Schotten, U., Verheule, S., Kirchhof, P., Goette, A.: Pathophysiological mechanisms of atrial fibrillation: a translational appraisal (2011). https://doi.org/10.1152/physrev.00031.2009

  13. Shi, W., et al.: Temporal sparse free-form deformations. Med. Image Anal. 17(7), 779–789 (2013). https://doi.org/10.1016/j.media.2013.04.010

    Article  Google Scholar 

  14. Tobon-Gomez, C., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015). https://doi.org/10.1109/TMI.2015.2398818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Sillett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sillett, C. et al. (2021). Optimisation of Left Atrial Feature Tracking Using Retrospective Gated Computed Tomography Images. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics