Abstract
The designed and implemented web platform for extracting sentiment from texts consists of a machine learning model retrieving sentiment from a text by categorizing the input into three different classes: positive, negative or neutral. Additionally, this model can be used via a web application processing two different types of text input, namely tweets and (movie) reviews. The web interface allows users to analyze their sentences and evaluate batches of opinions and comments based on specific keywords, retrieved from not one but from various types of online sources, namely Twitter, Reddit, and Youtube. Customizations for additional languages are an additional target.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garg, S., Verma, N.: Study of sentiment classification techniques. https://www.researchgate.net/publication/332343554_Study_of_Sentiment_Classification_Techniques. Accessed 20 Dec 2020
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of Twitter data. https://www.aclweb.org/anthology/W11-0705.pdf. Accessed 20 Dec 2020
Go, A., Huang, L., Bhayani, R.: Twitter sentiment analysis. https://nlp.stanford.edu/courses/cs224n/2009/fp/3.pdf. Accessed 20 Dec 2020
Yasen, M., Tedmori, S.: Movies reviews sentiment analysis and classification. https://www.researchgate.net/publication/332321070_Movies_Reviews_Sentiment_Analysis_and_Classification. Accessed 20 Dec 2020.
Go, A., Bhayani, R., Huang, L.: Sentiment140. http://help.sentiment140.com/. Accessed 20 Dec 2020
Maas, A., Daly, D., Pham, P., Huang, D., Ng, A., Potts. C.: Large movie review dataset. http://ai.stanford.edu/~amaas/data/sentiment/. Accessed 20 Dec 2020
Krouska, A., Troussas, C., Virvou, M.: The effect of preprocessing techniques on Twitter sentiment analysis. https://www.researchgate.net/publication/311755864_The_effect_of_preprocessing_techniques_on_Twitter_sentiment_analysis. Accessed 20 Dec 2020
Qaiser, S.: Text mining: use of TF-IDF to examine the relevance of words to documents. https://www.researchgate.net/publication/326425709_Text_Mining_Use_of_TF-IDF_to_Examine_the_Relevance_of_Words_to_Documents. Accessed 20 Dec 2020
Colace, F., Santo, M., Greco L.: A probabilistic approach to tweets’ sentiment classification. https://www.researchgate.net/publication/256472988_A_Probabilistic_Approach_to_Tweets'_Sentiment_Classification. Accessed 20 Dec 2020
Kibriya, A., Frank, E., Pfahringer, B., Holmes, G.: Multinomial naive bayes for text categorization revisited. https://perun.pmf.uns.ac.rs/radovanovic/dmsem/cd/install/Weka/doc/pubs/2004/KibriyaAI04-MultinomialNBRevisited.pdf. Accessed 20 Dec 2020
Hamdan, H., Bellot, P., Bechet, F.: Lsislif: CRF and logistic regression for opinion target extraction and sentiment polarity analysis. https://www.aclweb.org/anthology/S15-2128/. Accessed 20 Dec 2020
Tweepy Homepage. https://www.tweepy.org/. Accessed 20 Dec 2020
PRAW Official Documentation. https://praw.readthedocs.io/. Accessed 20 Dec 2020
Google API Client Documentation. https://github.com/googleapis/google-api-python-client. Accessed 20 Dec 2020
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Giannakis, S., Valavani, C., Alexandris, C. (2021). A Sentiment Analysis Web Platform for Multiple Social Media Types and Language-Specific Customizations. In: Kurosu, M. (eds) Human-Computer Interaction. Theory, Methods and Tools. HCII 2021. Lecture Notes in Computer Science(), vol 12762. Springer, Cham. https://doi.org/10.1007/978-3-030-78462-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-78462-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78461-4
Online ISBN: 978-3-030-78462-1
eBook Packages: Computer ScienceComputer Science (R0)