Abstract
Finite Element Analysis (FEA) is an integral process in manufacturing design, providing assurance of quality and structural integrity of a manufactured item. FEA involves conducting rigorous stress simulations on a designed model to study its structural behaviour when under specific loading scenarios. Current FEA tools involve viewing and manipulating the 3D model displayed on a monitor screen. A Mixed Reality (MR) user interface allowing for direct manipulation and specification of loading scenarios on a designed model was developed, thus enabling design engineers to find new ways of interacting and visualising FEA results for analysis and thus reducing unnecessary prototyping costs. Three gesture interfaces were developed to allow application of load parameters on a surface of a model, namely: Point-Apply, Point-Hold, and Point-Drag. A pilot evaluation was conducted to study the suitability of each as an interface designed for engineers. Results suggest that Point-Hold is empirically the most usable interface compared to the other interfaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virt. Environ. 6(4), 355–385 (1997)
Balk, S.A., Bertola, M.A., Inman, V.W.: Simulator sickness questionnaire: twenty years later (2013)
Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24(6), 574–594 (2008)
Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information, pp. 1–7. Digital Equipment Co. Ltd., Reading, UK (1986)
Carmo, M.B., et al.: Augmented reality for support decision on solar radiation harnessing. In: 2016 23rd Portuguese Meeting on Computer Graphics and Interaction (EPCGI), pp. 1–8. IEEE (2016)
Clothier, M., Bailey, M.: Augmented reality visualization tool for kings stormwater bridge. In: IASTED International Conference on Visualization, Imaging and Image Processing (VIIP) (2004)
Csikszentmihalyi, M., Abuhamdeh, S., Nakamura, J.: Flow. Flow and the Foundations of Positive Psychology, pp. 227–238. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_15
Csikszentmihalyi, M., Abuhamdeh, S., Nakamura, J., et al.: Flow (1990)
Csikszentmihalyi, M., Csikszentmihalyi, I.S.: Optimal Experience: Psychological Studies of Flow in Consciousness. Cambridge University Press, Cambridge (1992)
Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9 (2014)
Fernandes, A.S., Feiner, S.K.: Combating VR sickness through subtle dynamic field-of-view modification. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 201–210. IEEE (2016)
Fiorentino, M., Monno, G., Uva, A.: Interactive “touch and see” fem simulation using augmented reality. Int. J. Eng. Educ. 25(6), 1124–1128 (2009)
Hale, K.S., Stanney, K.M.: Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2014)
Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908. Sage Publications, Sage, Los Angeles (2006)
Heuveline, V., Ritterbusch, S., Ronnas, S.: Augmented reality for urban simulation visualization. Prepr. Ser. Eng. Math. Comput. Lab 16 (2011)
Huang, J., Ong, S., Nee, A.: Real-time finite element structural analysis in augmented reality. Adv. Eng. Softw. 87, 43–56 (2015). https://doi.org/10.1016/j.advengsoft.2015.04.014. http://www.sciencedirect.com/science/article/pii/S0965997815000733
Huang, J., Ong, S., Nee, A.: Visualization and interaction of finite element analysis in augmented reality. Comput. Aided Des. 84, 1–14 (2017). https://doi.org/10.1016/j.cad.2016.10.004. http://www.sciencedirect.com/science/article/pii/S0010448516301300
Issartel, P., Guéniat, F., Ammi, M.: Slicing techniques for handheld augmented reality. In: 2014 IEEE Symposium on 3D User Interfaces (3DUI), pp. 39–42. IEEE (2014)
Jackson, S.A., Marsh, H.W.: Development and validation of a scale to measure optimal experience: the flow state scale. J. Sport Exerc. Psychol. 18(1), 17–35 (1996)
Kendon, A.: Some relationships between body motion and speech. Stud. Dyadic Commun. 7(177), 90 (1972)
Kendon, A.: Language and gesture: unity or duality. In: Language and Gesture, vol. 2 (2000)
Kendon, A.: Gesture: Visible Action as Utterance. Cambridge University Press, Cambridge (2004)
Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)
Kim, M., Yi, S., Jung, D., Park, S., Seo, D.: Augmented-reality visualization of aerodynamics simulation in sustainable cloud computing. Sustainability 10(5), 1362 (2018)
Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02806-9_12
Li, W., Nee, A., Ong, S.: A state-of-the-art review of augmented reality in engineering analysis and simulation. Multimodal Technol. Interact. 1(3), 17 (2017)
Matsutomo, S., Mitsufuji, K., Hiasa, Y., Noguchi, S.: Real time simulation method of magnetic field for visualization system with augmented reality technology. IEEE Trans. Magn. 49(5), 1665–1668 (2013)
Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Telemanipulator and Telepresence Technologies, vol. 2351 (January 1994). https://doi.org/10.1117/12.197321
Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Telemanipulator and Telepresence Technologies, vol. 2351, pp. 282–292. International Society for Optics and Photonics (1995)
Piumsomboon, T., Clark, A., Billinghurst, M., Cockburn, A.: User-defined gestures for augmented reality. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 282–299. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40480-1_18
Regenbrecht, H., Baratoff, G., Wilke, W.: Augmented reality projects in the automotive and aerospace industries. IEEE Comput. Graph. Appl. 25(6), 48–56 (2005)
Scherer, S., Wabner, M.: Advanced visualization for finite elements analysis in virtual reality environments. Int. J. Interact. Des. Manuf. (IJIDeM) 2(3), 169–173 (2008). https://doi.org/10.1007/s12008-008-0044-6
Speicher, M., Hall, B.D., Nebeling, M.: What is mixed reality? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, p. 537. ACM (2019)
Sutherland, C., Hashtrudi-Zaad, K., Sellens, R., Abolmaesumi, P., Mousavi, P.: An augmented reality haptic training simulator for spinal needle procedures. IEEE Trans. Biomed. Eng. 60(11), 3009–3018 (2012)
Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, Hoboken (1991)
Valentini, P., Pezzuti, E.: Dynamic splines for interactive simulation of elastic beams in augmented reality. In: International Conference on Innovative Methods in Product Design, IMProVe 2011 (2011)
Vovk, A., Wild, F., Guest, W., Kuula, T.: Simulator sickness in augmented reality training using the Microsoft Hololens. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, New York, NY, USA, pp. 1–9. Association for Computing Machinery (2018). https://doi.org/10.1145/3173574.3173783
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Poh, E., Liong, K., Lee, J.S.A. (2021). Mixed Reality Interface for Load Application in Finite Element Analysis. In: Meiselwitz, G. (eds) Social Computing and Social Media: Experience Design and Social Network Analysis . HCII 2021. Lecture Notes in Computer Science(), vol 12774. Springer, Cham. https://doi.org/10.1007/978-3-030-77626-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-77626-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77625-1
Online ISBN: 978-3-030-77626-8
eBook Packages: Computer ScienceComputer Science (R0)