[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-class Vehicle Detection and Automatic License Plate Recognition Based on YOLO in Latin American Context

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2020)

Abstract

In Latin America, and many other countries around the globe, serious problems exist regarding the high level of traffic that generates congestion on avenues and streets, with poor road planning being one of the main causes, plus the excess of buses, mini-buses, taxis, and other vehicles that cause obstructions. Therefore, it would be very useful to know the flow of existing vehicles in each area to know and segment which roads certain vehicles should transit, thus generating greater control. This research proposes a methodology for the detection and multi-classification of vehicles in eight classes: cars, buses, trucks, combis (micro-buses), moto-taxis (auto-rickshaws), taxis, motorcycles, and bicycles; to later carry out the detection of the vehicle license plates and do the recognition of the characters on them; using Deep Learning techniques, specifically YOLOv3 and LeNet. The proposed methodology consists of four stages: Vehicle Detection, License Plate Detection, Character Segmentation, and Character Recognition. We also introduce a novel open-access dataset, LAT-VEDA, which contains more than 22 000 images divided into 8 classes. Good results were obtained in each one of the four stages of the system in comparison with the state of the art. Achieving the best mAP of 1.0 in the Vehicle License Plate Detection stage and having the lowest performance in the Vehicle Detection stage with a mAP of 0.68. This approach may be used by the Government to support the management of public transport, giving greater control and information about the flow of vehicles by area, in addition to the fact that the license plate recognition system can help in the management of the control of public policies and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCarthy, N.: The World’s Worst Cities For Traffic Congestion [Infographic], Forbes, 5 June 2019. https://www.forbes.com/sites/niallmccarthy/2019/06/05/the-worlds-worst-cities-for-traffic-congestion-infographic/#62613e8e12bc

  2. Acuña Reyes, J.: La ‘industria’ ilegal de colectivos invade Lima y va sobre ruedas. Perú 21, 02 November 2019. https://peru21.pe/lima/la-industria-ilegal-de-colectivos-invade-lima-y-va-sobre-ruedas-noticia/

  3. Almeida, A.: Congestión vehicular y la autoridad de transporte urbano de Lima y Callao, RPP, 03 December 2018. https://rpp.pe/columnistas/alexandrealmeida/congestion-vehicular-y-la-autoridad-de-transporte-urbano-de-lima-y-callao-noticia-1166651

  4. Zhang, K., Batterman, S.: Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450–451, 307–316 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.074

    Article  Google Scholar 

  5. Municipalidad de Lima: Medida Pico y Placa (2019). https://aplicativos.munlima.gob.pe/pico-y-placa

  6. Panamericana. LIMA: TRÁFICO VEHICULAR GENERA ESTRÉS AL 72% DE CIUDADANOS, 22 September 2018. https://panamericana.pe/locales/252432-lima-trafico-vehicular-genera-estres-72-ciudadanos

  7. Laroca, R., et al.: A robust real-time automatic license plate recognition based on the YOLO detector.In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, pp. 1–10 (2018)

    Google Scholar 

  8. Putra, M., Yussof, Z., Lim, K., Salim, S.: Convolutional neural network for person and car detection using YOLO framework. J. Telecommun. Electron. Comput. Eng. 10(1–7), 67–71 (2018)

    Google Scholar 

  9. Jiao, Z., Fan, H.: License plate recognition in unconstrained scenarios based on ALPR system. In: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI 2019), 540–544. Association for Computing Machinery, New York (2019)

    Google Scholar 

  10. Hendry, Chen, R.-C.: A new method for license plate character detection and recognition. In: Proceedings of the 6th International Conference on Information Technology: IoT and Smart City (ICIT 2018), pp. 204–208. Association for Computing Machinery, New York, December 2018

    Google Scholar 

  11. Jamtsho, Y., Riyamongkol, P., Waranusast, R.: Real-time Bhutanese license plate localization using YOLO. ICT Express 6(2), 121–124 (2020)

    Article  Google Scholar 

  12. Kessentini, Y., Dhia Besbes, M., Ammar, S., Chabbouh, A.: A two-stage deep neural network for multi-norm license plate detection and recognition. Expert Syst. Appl. 136, 159–170 (2019)

    Article  Google Scholar 

  13. Silva, S.M., Rosito Jung, C.: Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun. Image Represent. 71, 10277 (2020)

    Article  Google Scholar 

  14. Dhedhi, B., Datar, P., Chiplunkar, A., Jain, K., Rangarajan, A., Kundargi, J.: Automatic license plate recognition using deep learning. In: Akoglu, L., Ferrara, E., Deivamani, M., Baeza-Yates, R., Yogesh, P. (eds.) ICIIT 2018. CCIS, vol. 941, pp. 46–58. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3582-2_4

    Chapter  Google Scholar 

  15. The PASCAL Visual Object Classes, “PASCAL VOC 2007 Challenge”. http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html

  16. The PASCAL Visual Object Classes, “PASCAL VOC 2012 Challenge”. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

  17. COCO Dataset, “2014 validation data” (2020). https://cocodataset.org/#download

  18. Buyssens, T.: License Plate Recognition Dataset (2020). https://github.com/TheophileBuy/LicensePlateRecognition

  19. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. University of Washington, USA (2018). https://pjreddie.com/media/files/papers/YOLOv3.pdf

  20. León-Vera, L., Moreno-Vera, F.: Car monitoring system in apartments’ garages by small autonomous car using deep learning. In: Lossio-Ventura, J.A., Muñante, D., Alatrista-Salas, H. (eds.) SIMBig 2018. CCIS, vol. 898, pp. 174–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11680-4_18

    Chapter  Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  22. Más de 31 mil combis y micros saturan las pistas de Lima (2019). https://peru21.pe/lima/31-mil-combis-micros-saturan-pistas-lima-121691-noticia/?ref=p21r

  23. Bravo Medina, P.: Estas son las ciudades con peor tráfico; hay 4 latinoamericanas en el top 10, CNN, 14 February 2019. https://cnnespanol.cnn.com/2019/02/14/estas-son-las-ciudades-con-peor-congestion-vehicular-y-movilidad-hay-4-latinoamericanas-en-el-top-10/

  24. Barría, C.: Cuál es la ciudad con el peor tráfico vehicular de América Latina (y cómo podría mejorar su problema), BBC, 8 March 2019. https://www.bbc.com/mundo/noticias-47473793

  25. Montenegro-Montori, P., Camasca-Huamán, J., Acosta, G., Gave, K.: Latin-American Vehicle Dataset (LAT-VEDA), May 2020. https://bit.ly/2DnuAku

  26. Hsu, G.S., Chen, J.C., Chung, Y.Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013)

    Article  Google Scholar 

  27. Srebric, V.: EnglishLP database (2003). http://www.zemris.fer.hr/projects/LicensePlates/english/baza_slika.zip

  28. Weber, M.: Caltech Cars dataset (1999). http://www.vision.caltech.edu/Image_Datasets/cars_markus/cars_markus.tar

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  30. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  31. Castillo, R.: Lima, Perú. Combis, colectivos y caos en la Vía de Evitamiento - Lima, 2 June 2012. https://www.youtube.com/watch?v=QLUVVY2FQT8&t=105s. Accessed 18 July 2020

  32. ATV Noticias, Perú: Mototaxis formales pueden circular durante cuarentena por COVID-19, 12 May 2020. https://www.youtube.com/watch?v=r1XANkkSDSQ. Accessed 18 July 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro I. Montenegro-Montori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montenegro-Montori, P.I., Camasca-Huamán, J., Fabian, J. (2021). Multi-class Vehicle Detection and Automatic License Plate Recognition Based on YOLO in Latin American Context. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76228-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76227-8

  • Online ISBN: 978-3-030-76228-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics