Abstract
In Latin America, and many other countries around the globe, serious problems exist regarding the high level of traffic that generates congestion on avenues and streets, with poor road planning being one of the main causes, plus the excess of buses, mini-buses, taxis, and other vehicles that cause obstructions. Therefore, it would be very useful to know the flow of existing vehicles in each area to know and segment which roads certain vehicles should transit, thus generating greater control. This research proposes a methodology for the detection and multi-classification of vehicles in eight classes: cars, buses, trucks, combis (micro-buses), moto-taxis (auto-rickshaws), taxis, motorcycles, and bicycles; to later carry out the detection of the vehicle license plates and do the recognition of the characters on them; using Deep Learning techniques, specifically YOLOv3 and LeNet. The proposed methodology consists of four stages: Vehicle Detection, License Plate Detection, Character Segmentation, and Character Recognition. We also introduce a novel open-access dataset, LAT-VEDA, which contains more than 22 000 images divided into 8 classes. Good results were obtained in each one of the four stages of the system in comparison with the state of the art. Achieving the best mAP of 1.0 in the Vehicle License Plate Detection stage and having the lowest performance in the Vehicle Detection stage with a mAP of 0.68. This approach may be used by the Government to support the management of public transport, giving greater control and information about the flow of vehicles by area, in addition to the fact that the license plate recognition system can help in the management of the control of public policies and regulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McCarthy, N.: The World’s Worst Cities For Traffic Congestion [Infographic], Forbes, 5 June 2019. https://www.forbes.com/sites/niallmccarthy/2019/06/05/the-worlds-worst-cities-for-traffic-congestion-infographic/#62613e8e12bc
Acuña Reyes, J.: La ‘industria’ ilegal de colectivos invade Lima y va sobre ruedas. Perú 21, 02 November 2019. https://peru21.pe/lima/la-industria-ilegal-de-colectivos-invade-lima-y-va-sobre-ruedas-noticia/
Almeida, A.: Congestión vehicular y la autoridad de transporte urbano de Lima y Callao, RPP, 03 December 2018. https://rpp.pe/columnistas/alexandrealmeida/congestion-vehicular-y-la-autoridad-de-transporte-urbano-de-lima-y-callao-noticia-1166651
Zhang, K., Batterman, S.: Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450–451, 307–316 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.074
Municipalidad de Lima: Medida Pico y Placa (2019). https://aplicativos.munlima.gob.pe/pico-y-placa
Panamericana. LIMA: TRÁFICO VEHICULAR GENERA ESTRÉS AL 72% DE CIUDADANOS, 22 September 2018. https://panamericana.pe/locales/252432-lima-trafico-vehicular-genera-estres-72-ciudadanos
Laroca, R., et al.: A robust real-time automatic license plate recognition based on the YOLO detector.In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, pp. 1–10 (2018)
Putra, M., Yussof, Z., Lim, K., Salim, S.: Convolutional neural network for person and car detection using YOLO framework. J. Telecommun. Electron. Comput. Eng. 10(1–7), 67–71 (2018)
Jiao, Z., Fan, H.: License plate recognition in unconstrained scenarios based on ALPR system. In: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI 2019), 540–544. Association for Computing Machinery, New York (2019)
Hendry, Chen, R.-C.: A new method for license plate character detection and recognition. In: Proceedings of the 6th International Conference on Information Technology: IoT and Smart City (ICIT 2018), pp. 204–208. Association for Computing Machinery, New York, December 2018
Jamtsho, Y., Riyamongkol, P., Waranusast, R.: Real-time Bhutanese license plate localization using YOLO. ICT Express 6(2), 121–124 (2020)
Kessentini, Y., Dhia Besbes, M., Ammar, S., Chabbouh, A.: A two-stage deep neural network for multi-norm license plate detection and recognition. Expert Syst. Appl. 136, 159–170 (2019)
Silva, S.M., Rosito Jung, C.: Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun. Image Represent. 71, 10277 (2020)
Dhedhi, B., Datar, P., Chiplunkar, A., Jain, K., Rangarajan, A., Kundargi, J.: Automatic license plate recognition using deep learning. In: Akoglu, L., Ferrara, E., Deivamani, M., Baeza-Yates, R., Yogesh, P. (eds.) ICIIT 2018. CCIS, vol. 941, pp. 46–58. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3582-2_4
The PASCAL Visual Object Classes, “PASCAL VOC 2007 Challenge”. http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
The PASCAL Visual Object Classes, “PASCAL VOC 2012 Challenge”. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
COCO Dataset, “2014 validation data” (2020). https://cocodataset.org/#download
Buyssens, T.: License Plate Recognition Dataset (2020). https://github.com/TheophileBuy/LicensePlateRecognition
Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. University of Washington, USA (2018). https://pjreddie.com/media/files/papers/YOLOv3.pdf
León-Vera, L., Moreno-Vera, F.: Car monitoring system in apartments’ garages by small autonomous car using deep learning. In: Lossio-Ventura, J.A., Muñante, D., Alatrista-Salas, H. (eds.) SIMBig 2018. CCIS, vol. 898, pp. 174–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11680-4_18
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Más de 31 mil combis y micros saturan las pistas de Lima (2019). https://peru21.pe/lima/31-mil-combis-micros-saturan-pistas-lima-121691-noticia/?ref=p21r
Bravo Medina, P.: Estas son las ciudades con peor tráfico; hay 4 latinoamericanas en el top 10, CNN, 14 February 2019. https://cnnespanol.cnn.com/2019/02/14/estas-son-las-ciudades-con-peor-congestion-vehicular-y-movilidad-hay-4-latinoamericanas-en-el-top-10/
Barría, C.: Cuál es la ciudad con el peor tráfico vehicular de América Latina (y cómo podría mejorar su problema), BBC, 8 March 2019. https://www.bbc.com/mundo/noticias-47473793
Montenegro-Montori, P., Camasca-Huamán, J., Acosta, G., Gave, K.: Latin-American Vehicle Dataset (LAT-VEDA), May 2020. https://bit.ly/2DnuAku
Hsu, G.S., Chen, J.C., Chung, Y.Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013)
Srebric, V.: EnglishLP database (2003). http://www.zemris.fer.hr/projects/LicensePlates/english/baza_slika.zip
Weber, M.: Caltech Cars dataset (1999). http://www.vision.caltech.edu/Image_Datasets/cars_markus/cars_markus.tar
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Castillo, R.: Lima, Perú. Combis, colectivos y caos en la Vía de Evitamiento - Lima, 2 June 2012. https://www.youtube.com/watch?v=QLUVVY2FQT8&t=105s. Accessed 18 July 2020
ATV Noticias, Perú: Mototaxis formales pueden circular durante cuarentena por COVID-19, 12 May 2020. https://www.youtube.com/watch?v=r1XANkkSDSQ. Accessed 18 July 2020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Montenegro-Montori, P.I., Camasca-Huamán, J., Fabian, J. (2021). Multi-class Vehicle Detection and Automatic License Plate Recognition Based on YOLO in Latin American Context. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-76228-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76227-8
Online ISBN: 978-3-030-76228-5
eBook Packages: Computer ScienceComputer Science (R0)