Abstract
Graph Convolutional Networks (GCNs) have recently achiev-ed impressive performance in different classification tasks. However, over-smoothing remains a fundamental burden to achieve deep GCNs for node classification. This paper proposes Structure-Aware Deep Graph Convolutional Networks (SAGCN), a novel model to overcome this burden. At its core, SAGCN separates the initial node features from propagation and directly maps them to the output at each layer. Furthermore, SAGCN selectively aggregates the information from different propagation layers to generate structure-aware node representations, where the attention mechanism is exploited to adaptively balance the information from local and global neighborhoods for each node. Our experiments verify that the SAGCN model achieves state-of-the-art performance in various semi-supervised and full-supervised node classification tasks. More importantly, it outperforms many other backbone models, by using half the number of layers, or even fewer layers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. arXiv preprint arXiv:2007.02133 (2020)
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. arXiv preprint arXiv:1903.02428 (2019)
Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks. In: Proceedings of the 31th Advances in Neural Information Processing Systems, pp. 6530–6539 (2017)
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. arXiv preprint arXiv:2002.02126 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 6th International Conference on Learning Representations (2017)
Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)
Li, C., Goldwasser, D.: Encoding social information with graph convolutional networks forpolitical perspective detection in news media. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2594–2604 (2019)
Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional networks for semi-supervised learning. arXiv preprint arXiv:1801.07606 (2018)
Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings of the 26th International Conference on Knowledge Discovery & Data Mining, pp.338–348 (2020)
Ma, J., Wen, J., Zhong, M., Chen, W., Zhou, X., Indulska, J.: Multi-source multi-net micro-video recommendation with hidden item category discovery. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 384–400. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18579-4_23
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: International Conference on Machine Learning (2010)
Oono, K., Suzuki, T.: On asymptotic behaviors of graph cnns from dynamical systems perspective. arXiv preprint arXiv:1905.10947 (2019)
Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020)
Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: social influence prediction with deep learning. In: Proceedings of the 24th International Conference on Knowledge Discovery & Data Mining, pp. 2110–2119 (2018)
Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations (2019)
Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. arXiv preprint arXiv:1909.13021 (2019)
Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)
Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: GAMNet: graph augmented memory networks for recommending medication combination. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, vol. 33, pp. 1126–1133 (2019)
Thekumparampil, K.K., Wang, C., Oh, S., Li, L.J.: Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 7th International Conference on Learning Representations (2018)
Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018)
Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48. PMLR (2016)
Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3d human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)
Zhu, H., et al.: Bilinear graph neural network with neighbor interactions. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, vol. 5 (2020)
Acknowledgements
This work is supported by the Beijing Natural Science Foundation under grant 4192008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
He, M., Ding, T., Han, T. (2021). SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-75765-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75764-9
Online ISBN: 978-3-030-75765-6
eBook Packages: Computer ScienceComputer Science (R0)