Abstract
This paper proposes a method based on kernel density estimation (KDE) and expectation condition maximization (ECM) to realize digital modulation recognition over fading channels with non-Gaussian noise in the cognitive radio networks. A compound hypothesis test model is adopt here. The KDE method is used to estimate the probability density function of non-Gaussian noise, and the improved ECM algorithm is used to estimate the fading channel parameters. Numerical results show that the proposed method is robust to the noise type over fading channels. Moreover, when the GSNR is 10 dB, the correct recognition rate for the digital modulation recognition under non-Gaussian noise is more than 90%. Gaussian noise, and the improved ECM algorithm is used to estimate the fading channel parameters. Numerical results show that the proposed method is robust to the noise type over fading channels. Moreover, when the GSNR is 10 dB, the correct recognition rate for the digital modulation recognition under non-Gaussian noise is more than 90%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, D.Y., Zhang, N., Li, Z., et al.: Leveraging high order cumulants for spectrum sensing and power recognition in cognitive radio networks. IEEE Trans. Wireless Commun. 17(2), 1298–1310 (2018)
Zhang, M., Diao, M., Guo, L.M.: Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access 5, 11074–11082 (2017)
Yang, G.S., Wang, J., Zhang, G.Y., et al.: Joint estimation of timing and carrier phase offsets for MSK signals in alpha-stable noise. IEEE Commun. Lett. 22(1), 89–92 (2018)
Ma, J., Lin, S., Gao, H., Qiu, T.: Automatic modulation classification under non-gaussian noise: a deep residual learning approach. In: ICC2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, pp. 1-6 (2019)
Dutta, T., Satija, U., Ramkumar, B., Manikandan, M.S.: A novel method for automatic modulation classification under non-Gaussian noise based on variational mode decomposition. In: 2016 Twenty Second National Conference on Communication (NCC), Guwahati, pp. 1–6 (2016)
Hu, Y.H., Liu, M.Q., Cao, C.F., et al.: Modulation classification in alpha stable noise. In: 2016 IEEE 13th International Conference on Signal, Chengdu, pp. 1275–1278. IEEE (2016)
Amuru, S.D., da Silva, C.R.C.M.: A blind preprocessor for modulation classification applications in frequency-selective non-Gaussian channels. IEEE Trans. Commun. 63(1), 156–169 (2015)
Kebiche, D.E., Baghaki, A., Zhu, X., Champagne, B.: UFMC-based wideband spectrum sensing for cognitive radio systems in non-Gaussian noise. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, pp. 1–7 (2017)
Vinod, A.P., Madhukumar, A.S., Krishna, A.K.: Automatic modulation classification for cognitive radios using cumulants based on fractional lower order statistics. In: 2011 URSI General Assembly and Scientific Symposium, pp. 1–4 (2011)
Hu, S., Pei, Y., Liang, P.P., Liang, Y.: Robust modulation classification under uncertain noise condition using recurrent neural network. In: 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, pp. 1–7 (2018)
Zhang, G.Y., Wang, J., Yang, G.S., et al.: Nonlinear processing for correlation detection in symmetric alpha-stable noise. IEEE Signal Process. Lett. 25(1), 120–124 (2018)
Pardo, A., Real, E., Krishnaswamy, V., et al.: Directional kernel density estimation for classification of breast tissue spectra. IEEE Trans. Med. Imaging 36(1), 64–73 (2017)
Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80(2), 267–278 (1993)
Carvajal, R., Rivas, K., Agüero, J.C.: On maximum likelihood estimation of channel impulse response and carrier frequency offset in OFDM systems. In: 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM), Guatemala City, pp. 1–4 (2017)
Acknowledgments
The authors acknowledge the financial support of the Key Projects of R&D and Achievement Transformation in Qinghai Province (Grant: 2018-NN-151), the National Natural Science Foundation of China (Grant: 62071364 and 61761040).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Zhang, L., Liu, M., Ma, J., Liu, C. (2020). Modulation Recognition with Alpha-Stable Noise Over Fading Channels. In: Wang, X., Leung, V.C.M., Li, K., Zhang, H., Hu, X., Liu, Q. (eds) 6GN for Future Wireless Networks. 6GN 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-63941-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-63941-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63940-2
Online ISBN: 978-3-030-63941-9
eBook Packages: Computer ScienceComputer Science (R0)