[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Post-quantum Digital-Signature Algorithms on Finite 6-Dimensional Non-commutative Algebras

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2020)

Abstract

There are introduced three methods for defining finite 6-dimensional associative algebras over the ground finite field GF(p), every one of which contains a set of the global right-sided units. Formulas describing the set of the global units are presented for every of the considered three algebras that contain \(p^s\) global units, where \(s=2,3,4.\) The algebras are used as carriers of the hidden discrete logarithm problem that is used as the base cryptographic primitive of the post-quantum digital signature algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  2. Yan, S.Y.: Quantum Attacks on Public-Key Cryptosystems, p. 207. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4419-7722-9

  3. Smolin, J.A., Smith, G., Vargo, A.: Oversimplifying quantum factoring. Nature 499(7457), 163–165 (2013)

    Article  Google Scholar 

  4. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process. NIST PQCrypto project. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

  5. First NIST standardization conference - 11–13 April 2018. http://prometheuscrypt.gforge.inria.fr/2018-04-18.pqc2018.html

  6. Takagi, T. (ed.): PQCrypto 2016. LNCS, vol. 9606. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8

    Book  MATH  Google Scholar 

  7. Lange, T., Steinwandt, R. (eds.): PQCrypto 2018. LNCS, vol. 10786. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3

    Book  Google Scholar 

  8. Moldovyan, N.A.: Unified method for defining finite associative algebras of arbitrary even dimensions. Quasigroups Relat. Syst. 26(2), 263–270 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Sakalauskas, E., Tvarijonas, P., Raulynaitis, A.: Key agreement protocol (KAP) using conjugacy and discrete logarithm problems in group representation level. Informatica 18(1), 115–124 (2007)

    Article  MathSciNet  Google Scholar 

  10. Moldovyan, D.N.: Non-commutative finite groups as primitive of public-key cryptoschemes. Quasigroups Relat. Syst. 18(2), 165–176 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Moldovyan, D.N., Moldovyan, N.A.: Cryptoschemes over hidden conjugacy search problem and attacks using homomorphisms. Quasigroups Relat. Syst. 18(2), 177–186 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Kuzmin, A.S., Markov, V.T., Mikhalev, A.A., Mikhalev, A.V., Nechaev, A.A.: Cryptographic algorithms on groups and algebras. J. Math. Sci. 223(5), 629–641 (2017). https://doi.org/10.1007/s10958-017-3371-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Moldovyan, A.A., Moldovyan, N.A.: Blind signature protocols from digital signature standards. Int. J. Netw. Secur. 13(1), 22–30 (2011)

    MathSciNet  MATH  Google Scholar 

  14. International Standard ISO/IEC 14888–3:2006(E): Information technology - Security techniques - Digital Signatures with appendix - Part 3: Discrete logarithm based mechanisms (2006)

    Google Scholar 

  15. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MATH  Google Scholar 

  16. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13, 361–396 (2000)

    Article  Google Scholar 

  17. Koblitz, N., Menezes, A.J.: Another look at “provable security”. J. Cryptol. 20, 3–38 (2007). https://doi.org/10.1007/s00145-005-0432-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The reported study was partially funded by the Russian Foundation for Basic Research (project #18-07-00932-a); The Ministry of Science and Technology (MOST) under grant KC.01.22/16-20/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu Minh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moldovyan, N.A., Moldovyan, D.N., Moldovyan, A.A., Nguyen, H.M., Trinh, L.H.T. (2020). Post-quantum Digital-Signature Algorithms on Finite 6-Dimensional Non-commutative Algebras. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. FDSE 2020. Lecture Notes in Computer Science(), vol 12466. Springer, Cham. https://doi.org/10.1007/978-3-030-63924-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63924-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63923-5

  • Online ISBN: 978-3-030-63924-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics