Abstract
Creation of a Knowledge Graph (KG) from text, and its usages in solving several Natural Language Processing (NLP) problems are emerging research areas. Creating KG from text is a challenging problem which requires several NLP modules working together in unison. This task becomes even more challenging when constructing knowledge graph from a conversational data, as user and agent stated facts in conversations are often not grounded and can change with dialogue turns. In this paper, we explore KG construction from conversation data in travel and taxi booking domains. We use a fixed ontology for each of the conversation domain, and extract the relation triples from the conversation. Using active learning technique we build a state-of-the-art BERT based relation classifier which uses minimal data, but still performs accurate classification of the extracted relation triples. We further design heuristics for constructing KG that uses the BERT based relation classifier and Semantic Role Labelling (SRL) for handling negations in extracted relationship triples. Through our experiments we show that using our active learning trained classifier and heuristic based method, KG can be built with good correctness and completeness scores for domain specific conversational datasets. To the best of our knowledge this is the very first attempt at creating a KG from the conversational data that could be efficiently augmented in a dialogue agent to tackle the issue of data sparseness and improve the quality of generated response.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for open domain information extraction. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 344–354 (2015)
Bao, J., Duan, N., Yan, Z., Zhou, M., Zhao, T.: Constraint-based question answering with knowledge graph. In: Proceedings of COLING 2016, The 26th International Conference on Computational Linguistics: Technical Papers, pp. 2503–2514 (2016)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Graupmann, J., Schenkel, R., Weikum, G.: The spheresearch engine for unified ranked retrieval of heterogeneous xml and web documents. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 529–540. VLDB Endowment (2005)
Guo, Q., et al.: A survey on knowledge graph-based recommender systems. arXiv preprint arXiv:2003.00911 (2020)
Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., Hajishirzi, H.: Text generation from knowledge graphs with graph transformers. arXiv preprint arXiv:1904.02342 (2019)
Ng, V., Cardie, C.: Improving machine learning approaches to coreference resolution. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 104–111. Association for Computational Linguistics (2002)
Shi, P., Lin, J.: Simple bert models for relation extraction and semantic role labeling. arXiv preprint arXiv:1904.05255 (2019)
Turki, H., et al.: Wikidata: a large-scale collaborative ontological medical database. J. Biomed. Inform. 99, 103292 (2019)
Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D., et al.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Volume 1: Long and Short Papers), pp. 2180–2189 (2019)
Acknowledgement
The research reported in this paper is an outcome of the project “Autonomous Goal-Oriented and Knowledge-Driven Neural Conversational Agents”, sponsored by Accenture LLP. Asif Ekbal acknowledges Visvesvaraya YFRF.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ahmad, Z., Ekbal, A., Sengupta, S., Mitra, A., Rammani, R., Bhattacharyya, P. (2020). Active Learning Based Relation Classification for Knowledge Graph Construction from Conversation Data. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_70
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)