[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Online Handwriting Recognition System Based on Reinforcement Learning Theory

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

  • 2477 Accesses

Abstract

In this work, we formalize the problem of online handwriting recognition according to the reinforcement learning theory. The handwriting trajectory is divided into strokes and we extracted their structural and parametric features based on freeman codes, visual codes and beta-elliptic features respectively. The environments were trained using tabular q-learning algorithm in order to calculate the optimal sate-to-action values for each class of handwriting. The proposed model was evaluated on LMCA database and achieved very promising results for both structural and parametric representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaabouni, A., Boubaker, H., Kherallah, M., Alimi, A.M., El Abed, H.: Combining of off-line and on-line feature extraction approaches for writer identification. In: 12th International Conference on Document Analysis and Recognition, pp. 1299–1303. IEEE, China (2011)

    Google Scholar 

  2. Boubaker, H., El Baati, A., Kherallah, M., Alimi, A.M., Elabed, H.: Online Arabic handwriting modeling system based on the graphemes segmentation. In: 20th International Conference on Pattern Recognition, pp. 2061–2064. IEEE, Turkey (2010)

    Google Scholar 

  3. Plamondon, R., Alimi, A.M., Yergeau, P., Leclerc, F.: Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69(2), 119–128 (1993). https://doi.org/10.1007/BF00226195

    Article  Google Scholar 

  4. Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21(1), 32 (1995)

    Article  Google Scholar 

  5. Hollerbach, J.M.: An oscillation theory of handwriting. Biol. Cybern. 39(2), 139–156 (1981). https://doi.org/10.1007/BF00336740

    Article  Google Scholar 

  6. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  7. Plamondon, R.: A kinematic theory of rapid human movements. Part-I Movement representation and generation. Biol. Cybern. 72(1), 309–320 (1995)

    Article  Google Scholar 

  8. Bezine, H., Alimi, A. M., Sherkat, N.: Generation and analysis of handwriting script with the beta-elliptic model. In: 9th International Workshop on Frontiers in Handwriting Recognition, pp. 515–520. IEEE, Japan (2004)

    Google Scholar 

  9. Zouari, R., Boubaker, H., Kherallah, M.: Two staged fuzzy SVM algorithm and beta-elliptic model for online arabic handwriting recognition. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 450–458. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_51

    Chapter  Google Scholar 

  10. Tagougui, N., Boubaker, H., Kherallah, M., Alimi, A.M.: A hybrid MLPNN/HMM recognition system for online Arabic Handwritten script. In: World Congress on Computer and Information Technology, pp. 1–6. IEEE (2013)

    Google Scholar 

  11. Zouari, R., Boubaker, H., Kherallah, M.: A time delay neural network for online arabic handwriting recognition. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 1005–1014. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_99

    Chapter  Google Scholar 

  12. Tagougui, N., Kherallah, M.: Recognizing online Arabic handwritten characters using a deep architecture. In: 9th International Conference on Machine Vision, vol. 103410L, pp. 1–35, France (2017)

    Google Scholar 

  13. Dulac-Arnold, G., Denoyer, L., Gallinari, P.: Text classification: a sequential reading approach. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 411–423. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5_41

    Chapter  Google Scholar 

  14. Kherallah, M., Bouri, F., Alimi, A.M.: On-line Arabic handwriting recognition system based on visual encoding and genetic algorithm. Eng. Appl. Artif. Intell. 22(1), 153–170 (2009)

    Article  Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT press (2018)

    Google Scholar 

  16. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  17. Boubaker, H., Elbaati, A., Tagougui, N., El Abed, H., Kherallah, M., Alimi, A.M.: Online Arabic databases and applicationsOnline Arabic databases and applications. Guide to OCR for Arabic Scripts, pp. 541–557. Springer, Berlin (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramzi Zouari , Houcine Boubaker or Monji Kherallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zouari, R., Boubaker, H., Kherallah, M. (2020). Towards Online Handwriting Recognition System Based on Reinforcement Learning Theory. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics