Abstract
In this work, we formalize the problem of online handwriting recognition according to the reinforcement learning theory. The handwriting trajectory is divided into strokes and we extracted their structural and parametric features based on freeman codes, visual codes and beta-elliptic features respectively. The environments were trained using tabular q-learning algorithm in order to calculate the optimal sate-to-action values for each class of handwriting. The proposed model was evaluated on LMCA database and achieved very promising results for both structural and parametric representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chaabouni, A., Boubaker, H., Kherallah, M., Alimi, A.M., El Abed, H.: Combining of off-line and on-line feature extraction approaches for writer identification. In: 12th International Conference on Document Analysis and Recognition, pp. 1299–1303. IEEE, China (2011)
Boubaker, H., El Baati, A., Kherallah, M., Alimi, A.M., Elabed, H.: Online Arabic handwriting modeling system based on the graphemes segmentation. In: 20th International Conference on Pattern Recognition, pp. 2061–2064. IEEE, Turkey (2010)
Plamondon, R., Alimi, A.M., Yergeau, P., Leclerc, F.: Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69(2), 119–128 (1993). https://doi.org/10.1007/BF00226195
Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21(1), 32 (1995)
Hollerbach, J.M.: An oscillation theory of handwriting. Biol. Cybern. 39(2), 139–156 (1981). https://doi.org/10.1007/BF00336740
Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)
Plamondon, R.: A kinematic theory of rapid human movements. Part-I Movement representation and generation. Biol. Cybern. 72(1), 309–320 (1995)
Bezine, H., Alimi, A. M., Sherkat, N.: Generation and analysis of handwriting script with the beta-elliptic model. In: 9th International Workshop on Frontiers in Handwriting Recognition, pp. 515–520. IEEE, Japan (2004)
Zouari, R., Boubaker, H., Kherallah, M.: Two staged fuzzy SVM algorithm and beta-elliptic model for online arabic handwriting recognition. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 450–458. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_51
Tagougui, N., Boubaker, H., Kherallah, M., Alimi, A.M.: A hybrid MLPNN/HMM recognition system for online Arabic Handwritten script. In: World Congress on Computer and Information Technology, pp. 1–6. IEEE (2013)
Zouari, R., Boubaker, H., Kherallah, M.: A time delay neural network for online arabic handwriting recognition. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 1005–1014. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_99
Tagougui, N., Kherallah, M.: Recognizing online Arabic handwritten characters using a deep architecture. In: 9th International Conference on Machine Vision, vol. 103410L, pp. 1–35, France (2017)
Dulac-Arnold, G., Denoyer, L., Gallinari, P.: Text classification: a sequential reading approach. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 411–423. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5_41
Kherallah, M., Bouri, F., Alimi, A.M.: On-line Arabic handwriting recognition system based on visual encoding and genetic algorithm. Eng. Appl. Artif. Intell. 22(1), 153–170 (2009)
Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT press (2018)
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
Boubaker, H., Elbaati, A., Tagougui, N., El Abed, H., Kherallah, M., Alimi, A.M.: Online Arabic databases and applicationsOnline Arabic databases and applications. Guide to OCR for Arabic Scripts, pp. 541–557. Springer, Berlin (2012)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zouari, R., Boubaker, H., Kherallah, M. (2020). Towards Online Handwriting Recognition System Based on Reinforcement Learning Theory. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)