Abstract
A great variety of soft magnetic material has been developed with the aim of enhancing the magnetization, increasing the permeability, controlling the hysteresis loop shape, or raising the working frequency while in all cases decreasing the magnetic losses. Besides the physical considerations, material shaping and cost are important parameters. It is thus not surprising to see that despite natural selection, hundreds of materials of very different natures (metallic, ceramic, glass) and properties remain on the market. Choosing the right material for a specific application is often a tricky compromise and, too often, a question of industrial culture. This chapter aims at helping the user to make the best choice possible and gives some keys to improving device design. The first part is devoted to magnetic losses, giving the most used models in the low-frequency nonlinear regime and the high-frequency linear regime. The following section describes the different families of materials:low-alloyed steels, iron-cobalt alloys, iron-nickel alloys, amorphous and nanocrystalline alloys, and soft ferrites. In each section, the fabrication process is described, and tables of typical properties of most common materials are given. Finally, there is a table of applications and matching materials.
Similar content being viewed by others
References
Ahmadi, B., Zehani, K., LoBue, M., Loyau, V., Mazaleyrat, F.:Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites. J. Appl. Phys. 111(7), 07A510 (2012)
Alben, R., Becker, J.J., Chi, M.C.:Random anisotropy in amorphous ferromagnets. J. Appl. Phys. 49, 1643 (1978)
Alves, F., Simon, F., Kane, S.N., Mazaleyrat, F., Waeckerle, T. Save, T., Gupta, A.:Influence of rapid stress annealing on magnetic and structural properties of nanocrystalline fe 74.5 cu 1 nb 3 si 15.5 b 6 alloy. J. Magn. Magn. Mater. 294(2), e141–e144 (2005)
J-B; Hérission, D., Benchabi, A., Waekerlé, T., Fraisse, H., Boulogne, B.A., Desmoulin, F.:Nanocrystalline material strip production for the formation of magnetic torus comprises annealing cast amorphous ribbon of specified composition defiling under tension (2002)
Amperam.:Nanocrystalline Core Solution (2012)
Anderson, E.E., Cunningham, J.R. Jr, McDuffie, G.E.:Magnetic properties of the mixed garnets (3- x) y 2 o 3· x gd 2 o 3· 5 fe 2 o 3. Phys. Rev. 116(3), 624 (1959)
Appino, C., Khan, M., de la Barrière, O., Ragusa, C., Fiorillo, F.:Alternating and rotational losses up to magnetic saturation in non-oriented steel sheets. IEEE Trans. Magn. 52(5), 1–4 (2016)
Barbisio, E., Fiorillo, F., Ragusa, C.:Predicting loss in magnetic steels under arbitrary induction waveform and with minor hysteresis loops. IEEE Trans. Magn. 40(4), 1810–1819 (2004)
BASF.:Carbonyl Iron Powder for Inductive Electronic Components
Beatrice, C., Appino, C., de la Barrière, O., Fiorillo, F., Ragusa, C.:Broadband magnetic losses in fe-si and fe-co laminations. IEEE Trans. Magn. 50(4), 1–4 (2014)
Bertotti, G.:Hysteresi in Magnetism. Academic Press, San Diego (1998)
Bertotti, G.:General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24(1), 621–630 (1988)
Bertotti, G.:Dynamic generalization of the scalar preisach model of hysteresis. IEEE Trans. Magn. 28(5), 2599–2601 (1992)
Bertotti, G., Mayergoyz, I.D. (eds).:The Science of Hysteresis:Physical Modeling, Micromagnetics, and Magnetization Dynamics. Academic Press, Oxford (2006)
Brailsford, F.:Physical Principles of Magnetism. van Nostrand, London (1966)
Cazin, A.:Sur les effets thermiques du magnétisme. J. Phys. Theor. Appl. 5(1), 111–118 (1876)
de la Barriere, O., Ragusa, C., Appino, C., Fiorillo, F., LoBue, M., Mazaleyrat, F.:A computationally effective dynamic hysteresis model taking into account skin effect in magnetic laminations. Phys. B Condens. Matter 435, 80–83 (2014)
Ewing, J.A.:Induction in iron and other metals. The Electrician, 3rd edn. The Electrician Publishing co, London (1901)
Glaser, A.A., Kleynerman, N.M., Lukshina, V.A., Patapov, A.P., Serikov, V.V.:Thermomechanical treatment of the nanocrystalline alloy fecunbsib. Phys. Met. Metal. 72, 53 (1991)
Herzer, G.:Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327–3329 (1989)
Herzer, G.:Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)
Hitachi Metals:Metglas amorphous alloys. https://Metglas.com
Hitachi Metals:Nanocrystalline soft magnetic material FINEMET (2006). http://www.hitachi-metals.co.jp
JFE Steel Corporation:JFE Super Core (Electrical steel sheets for high-frequency application) (2005)
Lebourgeois, R., Duguey, S., Ganne, J-P., Heintz, J-M.:Influence of v 2 o 5 on the magnetic properties of nickel–zinc–copper ferrites. J. Magn. Magn. Mater. 312(2), 328–330 (2007)
Micrometals:Arnold powder cores. https://micrometals.com/, https://www.mag-inc.com/
Orb Electrical Steels:Cogent™Non oriented electrical steel, typical data (2015)
Patton, C.:A review of microwave relaxation in polycrystalline ferrites. IEEE Trans. Magn. 8(3), 433–439 (1972)
Pry, R.H., Bean, C.P.:Calculation of the energy loss in magnetic sheet materials using a domain model. J. Appl. Phys. 29(3), 532–533 (1958)
Sirvetz, M.H., Zneimer, J.E.:Microwave properties of polycrystalline rare earth garnets. J. Appl. Phys. 29(3), 431–433 (1958)
Lucas, A., Lebourgeois, R., Mazaleyrat, F., Laboure, E.:Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites. Appl. Phys. Lett. 97(18), 182502 (2010)
Lucas, A., Lebourgeois, R., Mazaleyrat, F., Laboure, E.:Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites. J. Manetism Mag. Mater. 323(6), 735–739 (2011)
Mazaleyrat, F. Varga, L.K.:Thermo-magnetic transitions in two-phase nanostructured materials. IEEE Trans. Magnetics Trans. Magnet. 37(4), 2232–2235 (2001)
ThyssenKrupp Electrical Steel GmbH:Grain oriented electrical steel PowerCore® (2012)
Toda, H., Oda, Y., Kohno, M., Ishida, M., Zaizen, Y.:A new high flux density non-oriented electrical steel sheet and its motor performance. IEEE Trans. Magn. 48(11), 3060–3063 (2012)
Tsutaoka, T.:Frequency dispersion of complex permeability in mn–zn and ni–zn spinel ferrites and their composite materials. J. Appl. Phys. 93(5), 2789–2796 (2003)
Vacuumschmelze:Soft Magnetic Materials and Semi-finished Products (2005)
Warburg, E.:Magnetische untersuchungen. Annalen der Physik 249(5), 141–164 (1881)
WEST, R.G., Blankenship, A.C.:Magnetic properties of dense lithium ferrites. J. Am. Ceram. Soc. 50(7), 343–349 (1967)
Yoshizawa, Y., Yamaguchi, K.:New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Mazaleyrat, F. (2021). Soft Magnetic Materials. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_31-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-63101-7_31-1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63101-7
Online ISBN: 978-3-030-63101-7
eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics