[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Soft Magnetic Materials

  • Living reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials
  • 232 Accesses

Abstract

A great variety of soft magnetic material has been developed with the aim of enhancing the magnetization, increasing the permeability, controlling the hysteresis loop shape, or raising the working frequency while in all cases decreasing the magnetic losses. Besides the physical considerations, material shaping and cost are important parameters. It is thus not surprising to see that despite natural selection, hundreds of materials of very different natures (metallic, ceramic, glass) and properties remain on the market. Choosing the right material for a specific application is often a tricky compromise and, too often, a question of industrial culture. This chapter aims at helping the user to make the best choice possible and gives some keys to improving device design. The first part is devoted to magnetic losses, giving the most used models in the low-frequency nonlinear regime and the high-frequency linear regime. The following section describes the different families of materials:low-alloyed steels, iron-cobalt alloys, iron-nickel alloys, amorphous and nanocrystalline alloys, and soft ferrites. In each section, the fabrication process is described, and tables of typical properties of most common materials are given. Finally, there is a table of applications and matching materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, B., Zehani, K., LoBue, M., Loyau, V., Mazaleyrat, F.:Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites. J. Appl. Phys. 111(7), 07A510 (2012)

    Google Scholar 

  2. Alben, R., Becker, J.J., Chi, M.C.:Random anisotropy in amorphous ferromagnets. J. Appl. Phys. 49, 1643 (1978)

    Article  ADS  Google Scholar 

  3. Alves, F., Simon, F., Kane, S.N., Mazaleyrat, F., Waeckerle, T. Save, T., Gupta, A.:Influence of rapid stress annealing on magnetic and structural properties of nanocrystalline fe 74.5 cu 1 nb 3 si 15.5 b 6 alloy. J. Magn. Magn. Mater. 294(2), e141–e144 (2005)

    Google Scholar 

  4. J-B; Hérission, D., Benchabi, A., Waekerlé, T., Fraisse, H., Boulogne, B.A., Desmoulin, F.:Nanocrystalline material strip production for the formation of magnetic torus comprises annealing cast amorphous ribbon of specified composition defiling under tension (2002)

    Google Scholar 

  5. Amperam.:Nanocrystalline Core Solution (2012)

    Google Scholar 

  6. Anderson, E.E., Cunningham, J.R. Jr, McDuffie, G.E.:Magnetic properties of the mixed garnets (3- x) y 2 o 3· x gd 2 o 3· 5 fe 2 o 3. Phys. Rev. 116(3), 624 (1959)

    Article  ADS  Google Scholar 

  7. Appino, C., Khan, M., de la Barrière, O., Ragusa, C., Fiorillo, F.:Alternating and rotational losses up to magnetic saturation in non-oriented steel sheets. IEEE Trans. Magn. 52(5), 1–4 (2016)

    Article  Google Scholar 

  8. Barbisio, E., Fiorillo, F., Ragusa, C.:Predicting loss in magnetic steels under arbitrary induction waveform and with minor hysteresis loops. IEEE Trans. Magn. 40(4), 1810–1819 (2004)

    Article  ADS  Google Scholar 

  9. BASF.:Carbonyl Iron Powder for Inductive Electronic Components

    Google Scholar 

  10. Beatrice, C., Appino, C., de la Barrière, O., Fiorillo, F., Ragusa, C.:Broadband magnetic losses in fe-si and fe-co laminations. IEEE Trans. Magn. 50(4), 1–4 (2014)

    Article  Google Scholar 

  11. Bertotti, G.:Hysteresi in Magnetism. Academic Press, San Diego (1998)

    Google Scholar 

  12. Bertotti, G.:General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24(1), 621–630 (1988)

    Article  ADS  Google Scholar 

  13. Bertotti, G.:Dynamic generalization of the scalar preisach model of hysteresis. IEEE Trans. Magn. 28(5), 2599–2601 (1992)

    Article  ADS  Google Scholar 

  14. Bertotti, G., Mayergoyz, I.D. (eds).:The Science of Hysteresis:Physical Modeling, Micromagnetics, and Magnetization Dynamics. Academic Press, Oxford (2006)

    Google Scholar 

  15. Brailsford, F.:Physical Principles of Magnetism. van Nostrand, London (1966)

    Google Scholar 

  16. Cazin, A.:Sur les effets thermiques du magnétisme. J. Phys. Theor. Appl. 5(1), 111–118 (1876)

    Article  Google Scholar 

  17. de la Barriere, O., Ragusa, C., Appino, C., Fiorillo, F., LoBue, M., Mazaleyrat, F.:A computationally effective dynamic hysteresis model taking into account skin effect in magnetic laminations. Phys. B Condens. Matter 435, 80–83 (2014)

    Article  ADS  Google Scholar 

  18. Ewing, J.A.:Induction in iron and other metals. The Electrician, 3rd edn. The Electrician Publishing co, London (1901)

    Google Scholar 

  19. Glaser, A.A., Kleynerman, N.M., Lukshina, V.A., Patapov, A.P., Serikov, V.V.:Thermomechanical treatment of the nanocrystalline alloy fecunbsib. Phys. Met. Metal. 72, 53 (1991)

    Google Scholar 

  20. Herzer, G.:Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327–3329 (1989)

    Article  ADS  Google Scholar 

  21. Herzer, G.:Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  ADS  Google Scholar 

  22. Hitachi Metals:Metglas amorphous alloys. https://Metglas.com

  23. Hitachi Metals:Nanocrystalline soft magnetic material FINEMET (2006). http://www.hitachi-metals.co.jp

    Google Scholar 

  24. JFE Steel Corporation:JFE Super Core (Electrical steel sheets for high-frequency application) (2005)

    Google Scholar 

  25. Lebourgeois, R., Duguey, S., Ganne, J-P., Heintz, J-M.:Influence of v 2 o 5 on the magnetic properties of nickel–zinc–copper ferrites. J. Magn. Magn. Mater. 312(2), 328–330 (2007)

    Article  ADS  Google Scholar 

  26. Micrometals:Arnold powder cores. https://micrometals.com/, https://www.mag-inc.com/

  27. Orb Electrical Steels:Cogent™Non oriented electrical steel, typical data (2015)

    Google Scholar 

  28. Patton, C.:A review of microwave relaxation in polycrystalline ferrites. IEEE Trans. Magn. 8(3), 433–439 (1972)

    Article  ADS  Google Scholar 

  29. Pry, R.H., Bean, C.P.:Calculation of the energy loss in magnetic sheet materials using a domain model. J. Appl. Phys. 29(3), 532–533 (1958)

    Article  ADS  Google Scholar 

  30. Sirvetz, M.H., Zneimer, J.E.:Microwave properties of polycrystalline rare earth garnets. J. Appl. Phys. 29(3), 431–433 (1958)

    Article  ADS  Google Scholar 

  31. Lucas, A., Lebourgeois, R., Mazaleyrat, F., Laboure, E.:Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites. Appl. Phys. Lett. 97(18), 182502 (2010)

    Article  ADS  Google Scholar 

  32. Lucas, A., Lebourgeois, R., Mazaleyrat, F., Laboure, E.:Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites. J. Manetism Mag. Mater. 323(6), 735–739 (2011)

    Article  ADS  Google Scholar 

  33. Mazaleyrat, F. Varga, L.K.:Thermo-magnetic transitions in two-phase nanostructured materials. IEEE Trans. Magnetics Trans. Magnet. 37(4), 2232–2235 (2001)

    Article  ADS  Google Scholar 

  34. ThyssenKrupp Electrical Steel GmbH:Grain oriented electrical steel PowerCore® (2012)

    Google Scholar 

  35. Toda, H., Oda, Y., Kohno, M., Ishida, M., Zaizen, Y.:A new high flux density non-oriented electrical steel sheet and its motor performance. IEEE Trans. Magn. 48(11), 3060–3063 (2012)

    Article  ADS  Google Scholar 

  36. Tsutaoka, T.:Frequency dispersion of complex permeability in mn–zn and ni–zn spinel ferrites and their composite materials. J. Appl. Phys. 93(5), 2789–2796 (2003)

    Article  ADS  Google Scholar 

  37. Vacuumschmelze:Soft Magnetic Materials and Semi-finished Products (2005)

    Google Scholar 

  38. Warburg, E.:Magnetische untersuchungen. Annalen der Physik 249(5), 141–164 (1881)

    Article  ADS  Google Scholar 

  39. WEST, R.G., Blankenship, A.C.:Magnetic properties of dense lithium ferrites. J. Am. Ceram. Soc. 50(7), 343–349 (1967)

    Article  Google Scholar 

  40. Yoshizawa, Y., Yamaguchi, K.:New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Mazaleyrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mazaleyrat, F. (2021). Soft Magnetic Materials. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63101-7_31-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63101-7

  • Online ISBN: 978-3-030-63101-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics