Abstract
Query-based similarity search is a useful exploratory tool that has been used in many areas such as music, economics, and biology to find common patterns and behaviors. Existing query-based search systems allow users to search large time series collections, but these systems are not very robust and they often fail to find similar patterns. In this work, we present Qute (Query by Text) a natural language search framework for finding similar patterns in time series. We show that Qute is expressive while having very small space and time overhead. Qute is a text-based search which leverages information retrieval features such as relevance feedback. Furthermore, Qute subsumes motif and discord/anomaly discovery. We demonstrate the utility of Qute with case studies on both animal behavior and human behavior data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koolen, M., Kamps, J., Bogers, T., Belkin, N., Kelly, D., Yilmaz, E.: Report on the second workshop on supporting complex search tasks. In: ACM SIGIR Forum, vol. 51, pp. 58–66. ACM (2017)
Schäfer, P., Leser, U.: Fast and accurate time series classification with weasel. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 637–646. ACM (2017)
Roitman, H., Yogev, S., Tsimerman, Y., Peres, Y.: Towards discovery-oriented patient similarity search. In: ACM SIGIR Workshop on Health Search & Discovery, p. 15
Sarker, H., Tyburski, M., Rahman, Md.M., Hovsepian, K., Sharmin, M., Epstein, D.H., Preston, K.L., Furr-Holden, C.D., Milam, A. Nahum-Shani, I., et al.: Finding significant stress episodes in a discontinuous time series of rapidly varying mobile sensor data. In: Proceedings of the 2016 CHI conference on human factors in computing systems, pp. 4489–4501. ACM (2016)
Keogh, E.J., Pazzani, M.J.: Relevance feedback retrieval of time series data. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 183–190. ACM (1999)
Mannino, M., Abouzied, A.: Expressive time series querying with hand-drawn scale-free sketches. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 388. ACM (2018)
Lee, D.J.-L., Lee, J., Siddiqui, T., Kim, J., Karahalios, K., Parameswaran, A.: You can’t always sketch what you want: understanding sensemaking in visual query systems. IEEE Trans. Vis. Comput. Graph. 26, 1267–1277 (2019)
Zamora-Martinez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172 (2014)
Correll, M., Gleicher, M.: The semantics of sketch: flexibility in visual query systems for time series data. In: 2016 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 131–140. IEEE (2016)
Imani, S., Keogh, E.: Matrix profile XIX: time series semantic motifs: a new primitive for finding higher-level structure in time series. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 329–338. IEEE (2019)
Bhattacharjee, T., Lee, G., Song, H., Srinivasa, S.S.: Towards robotic feeding: role of haptics in fork-based food manipulation. IEEE Robot. Autom. Lett. 4(2), 1485–1492 (2019)
Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–498. ACM (2003)
Imani, S. Alaee, S., Keogh, E.: Putting the human in the time series analytics loop. In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 635–644. ACM (2019)
Imani, S., Keogh, E.: Natura: towards conversational analytics for comparing and contrasting time series. In: Companion Proceedings of the Web Conference 2020, pp. 46–47 (2020)
Author: Project website (2019). https://sites.google.com/site/nlptimeseries/
Shekarpour, S., Marx, E., Auer, S., Sheth, A.: RQUERY: rewriting natural language queries on knowledge graphs to alleviate the vocabulary mismatch problem. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Giachanou, A., Crestani, F.: Tracking sentiment by time series analysis. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 1037–1040. ACM (2016)
Tixier-Boichard, M., Bed’hom, B., Rognon, X.: Chicken domestication: from archeology to genomics. C.R. Biol. 334(3), 197–204 (2011)
Abdoli, A., Murillo, A.C., Yeh, C.-C.M., Gerry, A.C., Keogh, E.J.: Time series classification to improve poultry welfare. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 635–642. IEEE (2018)
Alaee, S., Abdoli, A., Shelton, C., Murillo, A.C., Gerry, A.C., Keogh, E.: Features or shape? Tackling the false dichotomy of time series classification. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 442–450. SIAM (2020)
Dau, H.A., Bagnall, A. Kamgar, K., Yeh, C.-C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Keogh, E.: The UCR time series archive. arXiv preprint arXiv:1810.07758 (2018)
Hochheiser, H., Shneiderman, B.: A dynamic query interface for finding patterns in time series data. In: CHI 2002 Extended Abstracts on Human Factors in Computing Systems, pp. 522–523. ACM (2002)
Safdar, M., Cui, G., Kim, Y.J., Luo, M.R.: Perceptually uniform color space for image signals including high dynamic range and wide gamut. Opt. Express 25(13), 15131–15151 (2017)
Goin, D.E., Ahern, J.: Identification of spikes in time series. arXiv preprint arXiv:1801.08061 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Imani, S., Alaee, S., Keogh, E. (2021). Qute: Query by Text Search for Time Series Data. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2 . FTC 2020. Advances in Intelligent Systems and Computing, vol 1289. Springer, Cham. https://doi.org/10.1007/978-3-030-63089-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-63089-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63088-1
Online ISBN: 978-3-030-63089-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)