[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Overcoming Local Optima for Determining 2-Optimality Consensus for Collectives

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2020)

Abstract

Collective knowledge or consensus is used widely in our life. Determining the collective knowledge of a collective depends on the knowledge states of collective members. However, in a collective, each member has its knowledge, and knowledge states are often contradictory. Determining consensus satisfying postulate 2-Optimality of a collective is an NP-hard problem, and heuristic algorithms have been suggested. The basic algorithm is the most popular for this task. However, this algorithm can get stuck in local optima, which limits its consensus quality. To obtain consensus with high quality, in this study, we propose two approaches to avoid getting stuck in local optima. The experimental results show that the consensus quality generated by these approaches is at least 2.05% higher than that of the basic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen, N.T.: Processing inconsistency of knowledge in determining knowledge of a collective. Cybern. Syst. 40, 670–688 (2009)

    Article  Google Scholar 

  2. Knorn, S., Chen, Z., Member, S., Middleton, R.H.: Overview: collective control of multiagent systems. IEEE Trans. Control Netw. Syst. 3(4), 334–347 (2016)

    Article  MathSciNet  Google Scholar 

  3. Juszczyszyn, K., et al.: Agent-based approach for distributed intrusion detection system design. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 224–231. Springer, Heidelberg (2006). https://doi.org/10.1007/11758532_31

    Chapter  Google Scholar 

  4. Wu, T., Liu, X., Qin, J., Herrera, F.: Consensus evolution networks: a consensus reaching tool for managing consensus thresholds in group decision making. Inf. Fus. 52, 375–388 (2019)

    Article  Google Scholar 

  5. Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). https://doi.org/10.1007/978-1-84628-889-0

    Book  MATH  Google Scholar 

  6. Nguyen, N.T.: Inconsistency of knowledge and collective intelligence. Cybern. Syst. 39(6), 542–562 (2008)

    Article  Google Scholar 

  7. Griva, A., Bardaki, C., Pramatari, K., Papakiriakopoulos, D.: Retail business analytics: customer visit segmentation using market basket data. Expert Syst. Appl. 100, 1–16 (2018)

    Article  Google Scholar 

  8. Fagiolini, A., Bicchi, A.: On the robust synthesis of logical consensus algorithms for distributed intrusion detection. Automatica 49(8), 2339–2350 (2013)

    Article  MathSciNet  Google Scholar 

  9. Pira, M.L., Inturri, G., Ignaccolo, M., Pluchino, A.: Analysis of AHP methods and the pairwise majority rule (PMR) for collective preference rankings of sustainable mobility solutions. Transp. Res. Procedia 10, 777–787 (2015)

    Article  Google Scholar 

  10. Lezzhov, A.A., Atabekova, A.K., Tolstyko, E.A., Lazareva, E.A.: RNA phloem transport mediated by pre-miRNA and viral tRNA-like structures. Plant Sci. 284, 99–107 (2019)

    Article  Google Scholar 

  11. Kozierkiewicz, A., Sitarczyk, M.: Heuristic algorithms for 2-optimality consensus determination. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 48–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_5

    Chapter  Google Scholar 

  12. Michiels, W., Aarts, E., Jan, K.: Theoretical Aspects of Local Search. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-35854-1

    Book  MATH  Google Scholar 

  13. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  14. Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-07807-5

    Book  MATH  Google Scholar 

  15. Oliveto, P.S., et al.: How to escape local optima in black box optimisation: When non-elitism outperforms elitism. Algorithmica 80(5), 1604–1633 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dang, D.T., Nguyen, N.T., Hwang, D.: Multi-step consensus: an effective approach for determining consensus in large collectives. Cybern. Syst. 50(2), 208–229 (2019)

    Article  Google Scholar 

  17. Zhang, Y., et al.: Consensus-based ranking of multivalued objects: a generalized Borda count approach. IEEE Trans. Knowl. Data Eng. 26(1), 83–96 (2014)

    Article  Google Scholar 

  18. Tsai, M., Blelloch, G., Ravi, R., Schwartz, R.: A Consensus tree approach for reconstructing human evolutionary history and detecting population substructure. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(8), 918–928 (2011)

    Article  Google Scholar 

  19. Olfati-saber, B.R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  20. Uddin, M.N., Duong, T.H., Nguyen, N.T., Qi, X.M., Jo, G.S.: Semantic similarity measures for enhancing information retrieval in folksonomies. Expert Syst. Appl. 40(5), 1645–1653 (2013)

    Article  Google Scholar 

  21. Alaslani, M., Nawab, F., Shihada, B.: Blockchain in IoT systems: End-to-end delay evaluation. IEEE Internet Things J. 6(5), 8332–8344 (2019)

    Article  Google Scholar 

  22. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Comput. Surv. 51(3), 1–34 (2019)

    Article  Google Scholar 

  23. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1963)

    MATH  Google Scholar 

  24. Nguyen, N.T.: Using consensus methods for solving conflicts of data in distributed systems. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds.) SOFSEM 2000. LNCS, vol. 1963, pp. 411–419. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44411-4_30

    Chapter  Google Scholar 

  25. Dang, D.T., Nguyen, N.T., Hwang, D.: A new heuristic algorithm for 2-Optimality consensus determination. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 70–75 (2019)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the BK21PLUS Program (22A20130012009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dosam Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, D.T., Mazur, Z., Hwang, D. (2020). Overcoming Local Optima for Determining 2-Optimality Consensus for Collectives. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63007-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63006-5

  • Online ISBN: 978-3-030-63007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics