Abstract
Collective knowledge or consensus is used widely in our life. Determining the collective knowledge of a collective depends on the knowledge states of collective members. However, in a collective, each member has its knowledge, and knowledge states are often contradictory. Determining consensus satisfying postulate 2-Optimality of a collective is an NP-hard problem, and heuristic algorithms have been suggested. The basic algorithm is the most popular for this task. However, this algorithm can get stuck in local optima, which limits its consensus quality. To obtain consensus with high quality, in this study, we propose two approaches to avoid getting stuck in local optima. The experimental results show that the consensus quality generated by these approaches is at least 2.05% higher than that of the basic algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nguyen, N.T.: Processing inconsistency of knowledge in determining knowledge of a collective. Cybern. Syst. 40, 670–688 (2009)
Knorn, S., Chen, Z., Member, S., Middleton, R.H.: Overview: collective control of multiagent systems. IEEE Trans. Control Netw. Syst. 3(4), 334–347 (2016)
Juszczyszyn, K., et al.: Agent-based approach for distributed intrusion detection system design. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 224–231. Springer, Heidelberg (2006). https://doi.org/10.1007/11758532_31
Wu, T., Liu, X., Qin, J., Herrera, F.: Consensus evolution networks: a consensus reaching tool for managing consensus thresholds in group decision making. Inf. Fus. 52, 375–388 (2019)
Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). https://doi.org/10.1007/978-1-84628-889-0
Nguyen, N.T.: Inconsistency of knowledge and collective intelligence. Cybern. Syst. 39(6), 542–562 (2008)
Griva, A., Bardaki, C., Pramatari, K., Papakiriakopoulos, D.: Retail business analytics: customer visit segmentation using market basket data. Expert Syst. Appl. 100, 1–16 (2018)
Fagiolini, A., Bicchi, A.: On the robust synthesis of logical consensus algorithms for distributed intrusion detection. Automatica 49(8), 2339–2350 (2013)
Pira, M.L., Inturri, G., Ignaccolo, M., Pluchino, A.: Analysis of AHP methods and the pairwise majority rule (PMR) for collective preference rankings of sustainable mobility solutions. Transp. Res. Procedia 10, 777–787 (2015)
Lezzhov, A.A., Atabekova, A.K., Tolstyko, E.A., Lazareva, E.A.: RNA phloem transport mediated by pre-miRNA and viral tRNA-like structures. Plant Sci. 284, 99–107 (2019)
Kozierkiewicz, A., Sitarczyk, M.: Heuristic algorithms for 2-optimality consensus determination. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 48–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_5
Michiels, W., Aarts, E., Jan, K.: Theoretical Aspects of Local Search. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-35854-1
Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)
Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-07807-5
Oliveto, P.S., et al.: How to escape local optima in black box optimisation: When non-elitism outperforms elitism. Algorithmica 80(5), 1604–1633 (2018)
Dang, D.T., Nguyen, N.T., Hwang, D.: Multi-step consensus: an effective approach for determining consensus in large collectives. Cybern. Syst. 50(2), 208–229 (2019)
Zhang, Y., et al.: Consensus-based ranking of multivalued objects: a generalized Borda count approach. IEEE Trans. Knowl. Data Eng. 26(1), 83–96 (2014)
Tsai, M., Blelloch, G., Ravi, R., Schwartz, R.: A Consensus tree approach for reconstructing human evolutionary history and detecting population substructure. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(8), 918–928 (2011)
Olfati-saber, B.R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)
Uddin, M.N., Duong, T.H., Nguyen, N.T., Qi, X.M., Jo, G.S.: Semantic similarity measures for enhancing information retrieval in folksonomies. Expert Syst. Appl. 40(5), 1645–1653 (2013)
Alaslani, M., Nawab, F., Shihada, B.: Blockchain in IoT systems: End-to-end delay evaluation. IEEE Internet Things J. 6(5), 8332–8344 (2019)
Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Comput. Surv. 51(3), 1–34 (2019)
Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1963)
Nguyen, N.T.: Using consensus methods for solving conflicts of data in distributed systems. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds.) SOFSEM 2000. LNCS, vol. 1963, pp. 411–419. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44411-4_30
Dang, D.T., Nguyen, N.T., Hwang, D.: A new heuristic algorithm for 2-Optimality consensus determination. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 70–75 (2019)
Acknowledgment
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the BK21PLUS Program (22A20130012009).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dang, D.T., Mazur, Z., Hwang, D. (2020). Overcoming Local Optima for Determining 2-Optimality Consensus for Collectives. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-63007-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63006-5
Online ISBN: 978-3-030-63007-2
eBook Packages: Computer ScienceComputer Science (R0)