[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Combining Limited Parallelism and Nondeterminism in Alternating Finite Automata

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12442))

Included in the following conference series:

Abstract

We introduce the existential width measure (respectively, the maximal existential width), which, roughly speaking, for an alternating finite automaton (AFA), counts the number of branches which do not need to be traversed in an accepting computation (respectively, the maximum number of branches which can be ignored in any computation tree of the AFA). We also define the combined width (respectively, the maximal combined width), by combining this new measure with an existing measure, the universal width (respectively, the maximal universal width), which counts the minimum number of branches of a computation tree which must be traversed for an AFA to accept a computation (respectively, the maximum number of branches which can be traversed in any computation tree of the AFA). We give a polynomial algorithm to decide whether the (maximal) combined width is bounded, and a construction showing that an AFA with finite combined width can be simulated by an NFA with only a polynomial blow-up in the number of states. We also improve the upper bound for deciding finiteness of an m-state NFA’s tree width from \(O(m^3)\) to \(O(m^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MathSciNet  Google Scholar 

  2. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445, 1–24 (2012)

    Article  MathSciNet  Google Scholar 

  3. Holzer, M.: On emptiness and counting for alternating finite automata. In: Developments in Language Theory II, At the Crossroads of Mathematics, Computer Science and Biology, Magdeburg, Germany, 17–21 July 1995, pp. 88–97 (1995)

    Google Scholar 

  4. Hospodár, M., Jirásková, G., Krajňáková, I.: Operations on Boolean and alternating finite automata. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_16

    Chapter  Google Scholar 

  5. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inform. Comput 172(2), 202–217 (2002)

    Article  MathSciNet  Google Scholar 

  6. Hromkovic, J.: On the power of alternation in automata theory. J. Comput. Syst. Sci. 31(1), 28–39 (1985)

    Article  MathSciNet  Google Scholar 

  7. Keeler, C., Salomaa, K.: Alternating finite automata with limited universal branching. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 196–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0_13

    Chapter  Google Scholar 

  8. King, K.N.: Alternating multihead finite automata (extended abstract). In: Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel, July 13–17, 1981, Proceedings, pp. 506–520 (1981)

    Google Scholar 

  9. Moriya, E.: A grammatical characterization of alternating pushdown automata. Theor. Comput. Sci. 67(1), 75–85 (1989)

    Article  MathSciNet  Google Scholar 

  10. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)

    MathSciNet  Google Scholar 

  11. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)

    Article  MathSciNet  Google Scholar 

  12. Ruzzo, W.L.: Tree-size bounded alternation. J. Comput. Syst. Sci. 21(2), 218–235 (1980)

    Article  MathSciNet  Google Scholar 

  13. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret. Comput. Sci. 88(2), 325–349 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research supported by NSERC grant OGP0147224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Keeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keeler, C., Salomaa, K. (2020). Combining Limited Parallelism and Nondeterminism in Alternating Finite Automata. In: Jirásková, G., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2020. Lecture Notes in Computer Science(), vol 12442. Springer, Cham. https://doi.org/10.1007/978-3-030-62536-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62536-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62535-1

  • Online ISBN: 978-3-030-62536-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics