[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Regular Expression Length via Arithmetic Formula Complexity

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2020)

Abstract

We prove lower bounds on the length of regular expressions for finite languages by methods from arithmetic circuit complexity. First, we show a reduction from expression length to monotone arithmetic formula size. This yields lower bounds of \(nk^{\varOmega (\log k)}\) for the binomial language of all words with exactly k ones and \(n-k\) zeros, and of \(n^{\varOmega (\log n)}\) for the language of all Dyck words of length 2n. We also determine the blow-up of expression length when applying the operations intersection or shuffle to finite languages. Second, we adapt a lower bound method for multilinear arithmetic formulas by Hrubeš and Yehudayoff to regular expressions. With this method we give a tight lower bound of \(\varOmega (n^{-1} p^{ \log (n / \log p)-2 })\) for the language of all binary numbers with n bits that are divisible by a given odd integer p.

H. Seiwert—Partially supported by DFG grant JU 3105/1–2 (German Research Foundation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birget, J.-C.: Intersection and union of regular languages and state complexity. Inf. Process. Lett. 43(4), 185–190 (1992). https://doi.org/10.1016/0020-0190(92)90198-5

    Article  MathSciNet  Google Scholar 

  2. Chen, Y.: The Chung-Feller theorem revisited. Discrete Mathematics 308(7), 1328–1329 (2008). https://doi.org/10.1016/j.disc.2007.03.068

    Article  MathSciNet  Google Scholar 

  3. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. J. Comput. Syst. Sci. 12(2), 134–146 (1976). https://doi.org/10.1016/S0022-0000(76)80034-7

    Article  MathSciNet  Google Scholar 

  4. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular expressions: new results and open problems. J. Autom. Lang. Comb. 9(2–3), 233–256 (2004). https://doi.org/10.25596/jalc-2004-233

    Article  MathSciNet  Google Scholar 

  5. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. ACM Trans. Comput. Logic (TOCL) 13(1), 4 (2012). https://doi.org/10.1145/2071368.2071372

    Article  MathSciNet  Google Scholar 

  6. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inf. Process. Lett. 59(2), 75–77 (1996). https://doi.org/10.1016/0020-0190(96)00095-6

    Article  MathSciNet  Google Scholar 

  7. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expression size. In: ICALP, pp. 39–50. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_4

  8. Gruber, H., Holzer, M.: Tight bounds on the descriptional complexity of regular expressions. In: Developments in Language Theory, pp. 276–287. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_22

  9. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: FoSSaCS, pp. 273–286. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_20

  10. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found. Comput. Sci. 22(7), 1533–1548 (2011). https://doi.org/10.1142/S0129054111008866

    Article  MathSciNet  Google Scholar 

  11. Hrubeš, P., Yehudayoff, A.: Homogeneous formulas and symmetric polynomials. Comput. Complexity 20(3), 559–578 (2011). https://doi.org/10.1007/s00037-011-0007-3

    Article  MathSciNet  Google Scholar 

  12. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. J. ACM 29(3), 874–897 (1982). https://doi.org/10.1145/322326.322341

    Article  MathSciNet  Google Scholar 

  13. Jukna, S.: Boolean Function Complexity: Advances and Frontiers, vol. 27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24508-4

  14. Jukna, S.: Tropical complexity, sidon sets, and dynamic programming. SIAM J. Discrete Math. 30, 2064–2085 (2016). https://doi.org/10.1137/16M1064738

    Article  MathSciNet  Google Scholar 

  15. Khrapchenko, V.M.: Method of determining lower bounds for the complexity of \(P\)-schemes. Math. Notes Acad. Sciences USSR 10(1), 474–479 (1971)

    Google Scholar 

  16. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: 13th Annual Symposium on Switching and Automata Theory, pp. 125–129 (1972). https://doi.org/10.1109/SWAT.1972.29

  17. Molina Lovett, A., Shallit, J.: Optimal regular expressions for permutations. In: ICALP, pp. 121:1–12 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.121

  18. Mousavi, H.: Lower bounds on regular expression size. CoRR abs/1712.00811 (2017). http://arxiv.org/abs/1712.00811

  19. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010). https://doi.org/10.1561/0400000039

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to thank Mario Holldack, Stasys Jukna and Georg Schnitger for inspiring discussions and thank the anonymous referees for their kind and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Seiwert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cseresnyes, E., Seiwert, H. (2020). Regular Expression Length via Arithmetic Formula Complexity. In: Jirásková, G., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2020. Lecture Notes in Computer Science(), vol 12442. Springer, Cham. https://doi.org/10.1007/978-3-030-62536-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62536-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62535-1

  • Online ISBN: 978-3-030-62536-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics