[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recognition and Complexity Results for Projection Languages of Two-Dimensional Automata

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12442))

Included in the following conference series:

Abstract

The row projection (resp., column projection) of a given two-dimensional language L is the one-dimensional language consisting of first rows (resp., first columns) of all two-dimensional words in L. The operation of row projection has previously been studied under the name “frontier language”, and previous work in this area has focused primarily on one- and two-dimensional language classes.

In this paper, we study projections of languages recognized by various two-dimensional automaton classes. We show that both the row and column projections of languages recognized by (four-way) two-dimensional automata are exactly context-sensitive. We also show that the column projections of languages recognized by unary three-way two-dimensional automata can be recognized using nondeterministic logspace. Finally, we study the state complexity of projection languages for two-way two-dimensional automata, focusing on the language operations of union and diagonal concatenation.

Smith and Salomaa were supported by Natural Sciences and Engineering Research Council of Canada Grant OGP0147224.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous families within recognizable two-dimensional languages. Fund. Inform. 98(2–3), 143–166 (2010)

    MathSciNet  Google Scholar 

  2. Anselmo, M., Giammarresi, D., Madonia, M.: Classification of string languages via tiling recognizable picture languages. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 105–116. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3_7

    Chapter  Google Scholar 

  3. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Miller, R.E. (ed.) SWAT 1967, pp. 155–160 (1967)

    Google Scholar 

  4. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern Recogn. Artif. Intell. 6(2–3), 241–256 (1992)

    Article  Google Scholar 

  5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_4

    Chapter  Google Scholar 

  6. Hartmanis, J., Shank, H.: On the recognition of primes by automata. J. ACM 15(3), 382–389 (1968)

    Article  MathSciNet  Google Scholar 

  7. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)

    Article  MathSciNet  Google Scholar 

  8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    Google Scholar 

  9. Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. Inf. Sci. 55(1–3), 99–121 (1991)

    Article  MathSciNet  Google Scholar 

  10. Inoue, K., Takanami, I.: A characterization of recognizable picture languages. In: Nakamura, A., Nivat, M., Saoudi, A., Wang, P.S.P., Inoue, K. (eds.) ICPIA 1992. LNCS, vol. 654, pp. 133–143. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56346-6_35

    Chapter  Google Scholar 

  11. Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 134–144. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27812-2_13

    Chapter  Google Scholar 

  12. Kuroda, S.Y.: Classes of languages and linear-bounded automata. Inf. Control 7(2), 207–223 (1965)

    Article  MathSciNet  Google Scholar 

  13. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable picture languages. Inf. Comput. 138(2), 160–169 (1997)

    Article  MathSciNet  Google Scholar 

  14. Morita, K.: Two-dimensional languages. In: Martín-Vide, C., Mitrana, V., Păun, G. (eds.) Formal Languages and Applications, Studies in Fuzziness and Soft Computing, vol. 148, pp. 427–437. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39886-8_22

  15. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Computer Science and Applied Mathematics. Academic Press, New York (1979)

    Google Scholar 

  16. Salomaa, A.: Theory of Automata, International Series of Monographs in Pure and Applied Mathematics, vol. 100. Pergamon Press, Oxford (1969)

    Google Scholar 

  17. Salomaa, A.: Formal Languages. Academic Press, New York (1973)

    Google Scholar 

  18. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)

    Article  MathSciNet  Google Scholar 

  19. Smith, T.J.: Two-dimensional automata. Technical report 2019–637. Queen’s University, Kingston (2019)

    Google Scholar 

  20. Smith, T.J., Salomaa, K.: Decision problems for restricted variants of two-dimensional automata. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol. 11601, pp. 222–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23679-3_18

    Chapter  Google Scholar 

  21. Smith, T.J., Salomaa, K.: Concatenation operations and restricted variants of two-dimensional automata. arXiv:2008.11164 (2020)

  22. Wood, D.: Theory of Computation. Computer Science and Technology Series. Harper & Row, New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taylor J. Smith or Kai Salomaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smith, T.J., Salomaa, K. (2020). Recognition and Complexity Results for Projection Languages of Two-Dimensional Automata. In: Jirásková, G., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2020. Lecture Notes in Computer Science(), vol 12442. Springer, Cham. https://doi.org/10.1007/978-3-030-62536-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62536-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62535-1

  • Online ISBN: 978-3-030-62536-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics