[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Palindromic Length of Words with Many Periodic Palindromes

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12442))

Included in the following conference series:

  • 186 Accesses

Abstract

The palindromic length \(\mathrm {PL}(v)\) of a finite word v is the minimal number of palindromes whose concatenation is equal to v. In 2013, Frid, Puzynina, and Zamboni conjectured that: If w is an infinite word and k is an integer such that \(\mathrm {PL}(u)\le k\) for every factor u of w then w is ultimately periodic.

Suppose that w is an infinite word and k is an integer such \(\mathrm {PL}(u)\le k\) for every factor u of w. Let \({\varOmega (w,k)}\) be the set of all factors u of w that have more than \(\root k \of {k^{-1}\vert u\vert }\) palindromic prefixes. We show that \({\varOmega (w,k)}\) is an infinite set and we show that for each positive integer j there are palindromes ab and a word such that \((ab)^j\) is a factor of u and b is nonempty. Note that \((ab)^j\) is a periodic word and \((ab)^ia\) is a palindrome for each \(i\le j\). These results justify the following question: What is the palindromic length of a concatenation of a suffix of b and a periodic word \((ab)^j\) with “many” periodic palindromes?

It is known that if uv are nonempty words then \(|\mathrm {PL}(uv)-\mathrm {PL}(u)|\le \mathrm {PL}(v)\). The main result of our article shows that if ab are palindromes, b is nonempty, u is a nonempty suffix of b, \(\vert ab\vert \) is the minimal period of aba, and j is a positive integer with \(j\ge 3\mathrm {PL}(u)\) then \(\mathrm {PL}(u(ab)^j)-\mathrm {PL}(u)\ge 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrož, P., Kadlec, O., Masáková, Z., Pelantová, E.: Palindromic length of words and morphisms in class P. Theor. Comput. Sci. 780, 74–83 (2019). https://doi.org/10.1016/j.tcs.2019.02.024

    Article  MathSciNet  Google Scholar 

  2. Ambrož, P., Pelantová, E.: On palindromic length of Sturmian sequences. In: Hofman, P., Skrzypczak, M. (eds.) Developments in Language Theory, pp. 244–250. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-24886-4_18

    Chapter  Google Scholar 

  3. Borozdin, K., Kosolobov, D., Rubinchik, M., Shur, A.M.: Palindromic length in linear time. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 78, pp. 23:1–23:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.23

  4. Bucci, M., Richomme, G.: Greedy palindromic lengths. Int. J. Found. Comput. Sci. 29(03), 331–356 (2018). https://doi.org/10.1142/S0129054118500077

    Article  MathSciNet  Google Scholar 

  5. Fici, G., Gagie, T., Kräkkäinen, J., Kempa, D.: A subquadratic algorithm for minimum palindromic factorization. J. Discrete Algorithms 28, 41–48 (2014). https://doi.org/10.1016/j.jda.2014.08.001. stringMasters 2012 & 2013 Special Issue (Volume 1)

    Article  MathSciNet  Google Scholar 

  6. Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv. Appl. Math. 50(5), 737–748 (2013). https://doi.org/10.1016/j.aam.2013.01.002

    Article  MathSciNet  Google Scholar 

  7. Frid, A.E.: Sturmian numeration systems and decompositions to palindromes. Eur. J. Comb. 71, 202–212 (2018). https://doi.org/10.1016/j.ejc.2018.04.003

    Article  MathSciNet  Google Scholar 

  8. Frid, A.E.: First lower bounds for palindromic length. In: Hofman, P., Skrzypczak, M. (eds.) Developments in Language Theory, pp. 234–243. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-24886-4_17

    Chapter  Google Scholar 

  9. Kosolobov, D., Rubinchik, M., Shur, A.M.: Pal\(^k\) is linear recognizable online. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.J., Wattenhofer, R. (eds.) SOFSEM 2015: Theory and Practice of Computer Science, pp. 289–301. Springer, Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_24

    Chapter  Google Scholar 

  10. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 321–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29516-9_27

    Chapter  Google Scholar 

  11. Saarela, A.: Palindromic length in free monoids and free groups. In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp. 203–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8_19

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS20/183/OHK4/3T/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Rukavicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rukavicka, J. (2020). Palindromic Length of Words with Many Periodic Palindromes. In: Jirásková, G., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2020. Lecture Notes in Computer Science(), vol 12442. Springer, Cham. https://doi.org/10.1007/978-3-030-62536-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62536-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62535-1

  • Online ISBN: 978-3-030-62536-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics