[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Conceptual Schema of Ethereum

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12400))

Included in the following conference series:

  • 2472 Accesses

Abstract

There is an abundant literature on Ethereum, but as far as we know what is missing is its explicit conceptual schema. We present here the conceptual schema of Ethereum in UML. The schema should be useful to those that want to understand Ethereum and to those that develop the schema of Ethereum-based DApps. We present a few population constraints, and show that they suffice for the specification at the conceptual level of what is understood by immutability of a blockchain. We also show that the well-known reification construct and an initial constraint suffice to specify at the conceptual level that the Ethereum blockchain stores the full state history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See [23] for the first-order logic formalization of the constraints and examples.

References

  1. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2020). https://ethereum.github.io/yellowpaper/paper.pdf

  2. de Kruijff, J., Weigand, H.: Understanding the blockchain using enterprise ontology. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 29–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_3

    Chapter  Google Scholar 

  3. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts and DApps. O’Reilly Media, Newton (2018)

    Google Scholar 

  4. Dameron, M.: Beigepaper: an Ethereum technical specification (2019). https://github.com/chronaeon/beigepaper/blob/master/beigepaper.pdf

  5. Kasireddy, P.: How does Ethereum work, anyway? (2017). https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

  6. Pfeffer, J.: EthOn—Introducing semantic Ethereum. Organized Ethereum knowledge (2017). https://media.consensys.net/ethon-introducing-semantic-ethereum-15f1f0696986

  7. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling blockchain: a data processing view of blockchain systems. IEEE TKDE 30(7), 1366–1385 (2018)

    Google Scholar 

  8. Kim, H.M., Laskowski, M.: Toward an ontology-driven blockchain design for supply-chain provenance. Int. Syst. Account. Finance Manag. 25(1), 18–27 (2018)

    Google Scholar 

  9. ANSI: ANSI/X3/SPARC study group on data base management systems. Interim report. FDT, Bull. ACM SIGMOD 7(2) (1975)

    Google Scholar 

  10. Mylopoulos, J.: Conceptual Modelling and Telos. In: Loucopoulos, P., Zicari, R. (eds.) Conceptual Modelling, Databases and CASE, pp. 49–68. Wiley, Hoboken (1992)

    Google Scholar 

  11. Delcambre, L.M.L., Liddle, S.W., Pastor, O., Storey, V.C.: A reference framework for conceptual modeling. In: Trujillo, J., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 27–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_4

    Chapter  Google Scholar 

  12. Hofmann, F., Wurster, S., Ron, E., Böhmecke-Schwafert, M.: The immutability concept of blockchains and benefits of early standardization. In: 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K), Nanjing, pp. 1–8 (2017)

    Google Scholar 

  13. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models-a survey. IEEE TKDE 11(3), 464–497 (1999)

    Google Scholar 

  14. Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 397–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_29

    Chapter  Google Scholar 

  15. Artale, A., Franconi, E.: Foundations of temporal conceptual data models. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 10–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4_2

    Chapter  MATH  Google Scholar 

  16. Costal, D., Olivé, A., Sancho, M.-R.: Temporal features of class populations and attributes in conceptual models. In: Embley, D.W., Goldstein, R.C. (eds.) ER 1997. LNCS, vol. 1331, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63699-4_6

    Chapter  Google Scholar 

  17. Cabot, J., Olivé, A., Teniente, E.: Representing temporal information in UML. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 44–59. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45221-8_5

    Chapter  Google Scholar 

  18. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems. Ann. Math. Artif. Intell. 50(1–2), 5–38 (2007). https://doi.org/10.1007/s10472-007-9068-z

    Article  MathSciNet  MATH  Google Scholar 

  19. McBrien, P.: Temporal constraints in non-temporal data modelling languages. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 412–425. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_30

    Chapter  Google Scholar 

  20. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-39390-0

    Book  MATH  Google Scholar 

  21. Olivé, A.: A method for the definition of integrity constraints in object-oriented conceptual modeling languages. Data Knowl. Eng. 59(3), 559–575 (2006)

    Article  Google Scholar 

  22. Pfeffer, J.: EthOn: An Ethereum Ontology. https://consensys.github.io/EthOn/EthOn_spec.html. Accessed March 2020

  23. Olivé, A.: The conceptual schema of Ethereum and of the ERC–20 token standard. http://hdl.handle.net/2117/328036 (2020)

Download references

Acknowledgments

The author is greatly indebted to Joan Antoni Pastor and Jordi Estapé for their comments to earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Olivé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olivé, A. (2020). The Conceptual Schema of Ethereum. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds) Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12400. Springer, Cham. https://doi.org/10.1007/978-3-030-62522-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62522-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62521-4

  • Online ISBN: 978-3-030-62522-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics