Abstract
Low defective rates and high variability in industrial processes, make difficult to develop accurate, reliable and fast automatic quality control systems. This paper presents two novel methods for the Quality Control of welded parts based on computer vision. The first method, BG, uses a modification of the bisection method, and a tuned version of the GoogleNet. The second method, BGN, is an ensemble of GoogleNet CNNs and a Convolutional Auto-Encoder to absorbe observed data variability. The CAE is used to select the best CNN from the ensemble to use for each input image. Both methods have been tested on more than 105 images and run in less than 0.2 s in a standard i7 CPU with mae values around 0.04–3.63 pixels, standard deviation of absolute errors around 1.15–7.48 pixels, and a percentage of correct predictions between 95–99.97%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Godina, R., Matias, J.C.O.: Quality control in the context of industry 4.0. In: Reis, J., Pinelas, S., Melão, N. (eds.) IJCIEOM 2018. SPMS, vol. 281, pp. 177–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14973-4_17
Alcácer, V., Cruz-Machado, V.: Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 22(3) (2019). https://doi.org/10.1016/j.jestch.2019.01.006
Psarommatis, F., May, G., Dreyfus, P.A., Kiritsis, D.: Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research. Int. J. Prod. Res. 1–17 (2019). https://doi.org/10.1080/00207543.2019.1605228
Bajic, B., Cosic, I., Lazarevic, M., Sremčev, N., Rikalovic, A.: Machine Learning Techniques for Smart Manufacturing: Applications and Challenges in Industry 4.0 (2018)
Psarommatis, F., Kiritsis, D.: A scheduling tool for achieving zero defect manufacturing (ZDM): a conceptual framework. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 271–278. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_34
Van den Broeke, M., Boute, R., Van Mieghem, J.: Platform flexibility strategies: R&D investment versus production customization tradeoff. Eur. J. Oper. Res. (2018). https://doi.org/10.1016/j.ejor.2018.03.032
Muniasamy, A., Alasiry, A.: Deep learning: the impact on future eLearning. Int. J. Emerg. Technol. Learn. (iJET) 15, 188 (2020). https://doi.org/10.3991/ijet.v15i01.11435
Tabernik, D., Šela, S., Skvarč, J., Skočaj, D.: Segmentation-based deep-learning approach for surface-defect detection. J. Intell. Manuf. 31(3), 759–776 (2019). https://doi.org/10.1007/s10845-019-01476-x
Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M., Wellbrock, W.: Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors 19, 3987 (2019). https://doi.org/10.3390/s19183987
Sengupta, S., et al.: A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl.-Based Syst. 194 (2020). https://doi.org/10.1016/j.knosys.2020.105596
Käding, C., Rodner, E., Freytag, A., Denzler, J.: Fine-tuning deep neural networks in continuous learning scenarios. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10118, pp. 588–605. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54526-4_43
Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert Gate: Lifelong Learning with a Network of Experts, pp. 7120–7129 (2017). https://doi.org/10.1109/cvpr.2017.753
Ehiwario, J.C.: Comparative study of bisection, Newton-Raphson and secant methods of root-finding problems. IOSR J. Eng. 4, 01–07 (2014). https://doi.org/10.9790/3021-04410107
Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/cvpr.2015.7298594
Guo, X., Liu, X., Zhu, E., Yin, J.: Deep Clustering with Convolutional Autoencoders, pp. 373–382 (2017). https://doi.org/10.1007/978-3-319-70096-0_39
Baek, N., Park, S.M., Kim, K.J., Park, S.B.: Vehicle color classification based on the support vector machine method. Proc. Commun. Comput. Inf. Sci. 2, 1133–1139 (2007). https://doi.org/10.1007/978-3-540-74282-1_127
Acknowledgments
This work has been founded by the project KK-2019/00095 (Departamento de Desarrollo Economico e Infraestructuras del Govierno Vasco. Programa ELKARTEK 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Muniategui, A. et al. (2020). Deep Learning Based Algorithms for Welding Edge Points Detection. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-62365-4_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62364-7
Online ISBN: 978-3-030-62365-4
eBook Packages: Computer ScienceComputer Science (R0)