Abstract
IoT (Internet of Things) alludes to many different devices and systems connected to Internet, being 5 billion the number of these devices working around the world actually. The security policies applied to this kind of systems can be improve due to their behaviour, usually associated to their low price and low computing capacity.
This work addresses the behaviour and impact of latent space of an auto-encoder for creating a classification model based on decision trees, in order to include it in a IDS (Intrusion Detection System) specialized in IoT environments. A validate IoT dataset, based on MQTT (Message Queue Telemetry Transport), has been used for applied the techniques implemented for extracting an optimal model oriented to detect the attacks over this protocol with a suitable results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of Things (IoT) Communication Protocols : Review, pp. 685–690 (2017)
Alaiz-Moreton, H., Aveleira-Mata, J., Ondicol-Garcia, J., Muñoz-Castañeda, A.L., García, I., Benavides, C.: Multiclass classification procedure for detecting attacks on MQTT-IoT protocol. Complexity 2019, 1–11 (2019). https://doi.org/10.1155/2019/6516253
Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M.A., Alrashdi, I., Ming, H.: A practical evaluation of a secure and energy-efficient smart parking system using the MQTT protocol. ACM Int. Conf. Proc. Ser. 165–170 (2019). https://doi.org/10.1145/3325917.3325937
Andy, S., Rahardjo, B., Hanindhito, B.: Attack scenarios and security analysis of MQTT communication protocol in IoT system, 19–21 September 2017
Ben-Asher, N., Gonzalez, C.: Effects of cyber security knowledge on attack detection. Comput. Hum. Behav. 48, 51–61 (2015). https://doi.org/10.1016/j.chb.2015.01.039
Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Towards generating real-life datasets for network intrusion detection. Int. J. Network Secur. 17(6), 683–701 (2015)
Chakrabarty, B., Chanda, O., Saiful, M.: Anomaly based intrusion detection system using genetic algorithm and K-centroid clustering. Int. J. Comput. Appl. 163(11), 13–17 (2017). https://doi.org/10.5120/ijca2017913762, http://www.ijcaonline.org/archives/volume163/number11/chakrabarty-2017-ijca-913762.pdf
Hamdani, S., Sbeyti, H.: A comparative study of COAP and MQTT communication protocols. In: 7th International Symposium on Digital Forensics and Security, ISDFS 2019, pp. 1–5 (2019). https://doi.org/10.1109/ISDFS.2019.8757486
Han, L., Li, W., Su, Z.: An assertive reasoning method for emergency response management based on knowledge elements c4.5 decision tree. Expert Syst. Appl. 122, 65–74 (2019). https://doi.org/10.1016/j.eswa.2018.12.042, http://www.sciencedirect.com/science/article/pii/S0957417418308108
Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International Conference on Platform Technology and Service (PlatCon), pp. 1–5 (2016). https://doi.org/10.1109/PlatCon.2016.7456805, http://ieeexplore.ieee.org/document/7456805/
Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Generation Comput. Syst. 100, 779–796 (2019). https://doi.org/10.1016/j.future.2019.05.041
Palsson, K.: mqtt-malaria @ github.com (2018). https://github.com/remakeelectric/mqtt-malaria
Prabha, K., Sudha, S.: A Survey on IPS methods and techniques. Int. J. Comput. Sci. Issues, 13(2), 38–43 (2016). https://doi.org/10.20943/01201602.3843, http://ijcsi.org/contents.php?volume=13&&issue=2
Pumsirirat, A., Yan, L.: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine. Technical Report 1 (2018). www.ijacsa.thesai.org
Tao, X., Kong, D., Wei, Y., Wang, Y.: A big network traffic data fusion approach based on fisher and deep auto-encoder. Information 7(2), 20 (2016). https://doi.org/10.3390/info7020020, http://www.mdpi.com/2078-2489/7/2/20
Zhou, Q., Pezaros, D.: Evaluation of machine learning classifiers for zero-day intrusion detection - an analysis on CIC-AWS-2018 dataset (2019). http://arxiv.org/abs/1905.03685
Acknowledgements
This work is partially supported by:
– Spanish National Cybersecurity Institute (INCIBE) and developed Research Institute of Applied Sciences in Cybersecurity (RIASC).
– Junta de Castilla y León - Consejería de Educación. Project: LE078G18. UXXI2018/000149. U-220.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
García-Ordás, M.T., Aveleira-Mata, J., Casteleiro-Roca, JL., Calvo-Rolle, J.L., Benavides-Cuellar, C., Alaiz-Moretón, H. (2020). Autoencoder Latent Space Influence on IoT MQTT Attack Classification. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-62365-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62364-7
Online ISBN: 978-3-030-62365-4
eBook Packages: Computer ScienceComputer Science (R0)