Abstract
Data difficulties as imbalanced class distribution cause that the methods which can produce reliable predictive models remain a focus of intense research. This work attempts employing the concept of Decision Templates for the mentioned classification task. Additionally, a modification to the original method is introduced, which uses many decision templates for each class instead of one per class. The usefulness of the algorithms employing the idea of Decision Template algorithm is evaluated based on extensive experimental study and backed-up with a thorough statistical analysis. We also present an in-depth discussion of both the positive and negative impacts of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alcalá-Fdez, J., et al.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Log. Soft Comput. 17, 255–287 (2011)
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 49–60. Association for Computing Machinery (1999)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Dietrich, C., Palm, G., Schwenker, F.: Decision templates for the classification of bioacoustic time series. Inf. Fusion 4(2), 101–109 (2003). https://doi.org/10.1016/S1566-2535(03)00017-4, http://www.sciencedirect.com/science/article/pii/S1566253503000174
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, USA (2000)
GarcíÂa, V., Sánchez, J., Mollineda, R.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl.-Based Syst. 25(1), 13–21 (2012). special Issue on New Trends in Data Mining
Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)
Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0
Krawczyk, B., Wozniak, M., Schaefer, G.: Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 14, 554–562 (2014). https://doi.org/10.1016/j.asoc.2013.08.014
Ksieniewicz, P.: Undersampled majority class ensemble for highly imbalanced binary classification. In: Proceedings of the Second International Workshop on Learning with Imbalanced Domains: Theory and Applications, vol. 94, pp. 82–94. PMLR (2018)
Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recogn. 34(2), 299–314 (2001)
Liu, X., Wu, J., Zhou, Z.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2009)
Min, J.-K., Cho, S.-B.: Multiple classifier fusion using k-nearest localized templates. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 447–456. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2_46
Nguyen, T.T., et al.: Evolving an optimal decision template for combining classifiers. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 608–620. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_50
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)
Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)
Acknowledgments
This work was supported by the Polish National Science Centre under the grant No. 2017/27/B/ST6/01325 as well as by the statutory funds of the Department of Systems and Computer Networks,Wroclaw University of Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wojciechowski, S., Woźniak, M. (2020). Employing Decision Templates to Imbalanced Data Classification. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-61705-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61704-2
Online ISBN: 978-3-030-61705-9
eBook Packages: Computer ScienceComputer Science (R0)