[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Quantifying Temporal Novelty in Social Networks Using Time-Varying Graphs and Concept Drift Detection

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

This paper presents a new approach to quantify temporal novelties in Social Networks and, as a consequence, to identify changing points driven by the occurrence of new real-world events that influence the public opinion. Our approach starts using Text Mining tools to highlight the main key terms, that will be later used to create a temporal graph, thus preserving their relation into the original texts and their temporal dependencies. We also defined a new measure to quantify the way users’ opinions have been evolving over time. Finally, we propose a straightforward Concept Drift method to identify when the changing points happen. Our full approach was evaluated on a historical event in Brazil: the 2018 presidential election race. We have chosen this period due to the volume of publications that, definitely, stated Social Networks as the main mechanism for new political activism. Our good results emphasize the importance of our approach and open new possibilities to identify bots developed to just spread, for example, fake news.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By using the matrix notation, the weight can also be represented as \(m_{u,v}\).

  2. 2.

    In this work,“i” and “j” are just iteration variables used in different contexts.

  3. 3.

    More details about these preprocessing activities are provided in Sect. 5.2.

  4. 4.

    We are using tweets in Portuguese due to the focus of our research, however the reader can follow the same preprocessing steps regardless the language of his/her texts.

  5. 5.

    See: https://oglobo.globo.com/brasil/tudo-sobre-candidato-presidencia-jair-bolsonaro-psl-23123698.

  6. 6.

    See: https://www.gazetadopovo.com.br/opiniao/artigos/o-fenomeno-bolsonaro-28wcdvyckyt4miedabe14zmxl/.

    https://www.bbc.com/portuguese/brasil-45768006.

  7. 7.

    See: https://www1.folha.uol.com.br/poder/2018/10/bolsonaro-diz-que-pretende-acabar-com-ativismo-ambiental-xiita-se-for-presidente.shtml.

  8. 8.

    See: https://oglobo.globo.com/brasil/campanha-confirma-que-bolsonaro-nao-vai-aos-debates-na-televisao-23166517.

  9. 9.

    https://www.bbc.com/portuguese/brasil-46017462.

    https://g1.globo.com/politica/noticia/2018/10/29/bolsonaro-diz-que-convidara-sergio-moro-para-ministro-da-justica-ou-o-indicara-para-o-stf.ghtml.

    https://www.bbc.com/portuguese/brasil-45986689.

  10. 10.

    See: https://politica.estadao.com.br/noticias/geral,haddad-visita-lula-para-discutir-2-turno,70002538683.

  11. 11.

    See: https://oglobo.globo.com/brasil/videos-na-tv-bolsonaro-usa-lula-em-ataques-haddad-fala-em-casos-de-intolerancia-politica-23152195.

  12. 12.

    See: https://politica.estadao.com.br/noticias/eleicoes,eu-nao-iria-debater-com-lula-de-jeito-nenhum-afirma-bolsonaro,70002547290.

  13. 13.

    See: https://politica.estadao.com.br/noticias/eleicoes,roger-waters-pede-para-visitar-lula-na-prisao-em-curitiba,70002566404.

References

  1. Borondo, J., Morales, A.J., Losada, J.C., Benito, R.M.: Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish presidential election as a case study. Chaos: Interdisc. J. Nonlinear Sci. 22(2), 023138 (2012). https://doi.org/10.1063/1.4729139

    Article  Google Scholar 

  2. Borondo, J., Morales, A.J., Losada, J.C., Benito, R.M.: Analyzing the usage of social media during Spanish presidential electoral campaigns, pp. 785–792. IEEE, August 2016. https://doi.org/10.1109/ASONAM.2016.7752327

  3. Box, G., Jenkins, G., Reinsel, G., Ljung, G.: Time Series Analysis: Forecasting and Control. Wiley Series in Probability and Statistics. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  4. Caldarelli, G., et al.: A multi-level geographical study of Italian political elections from Twitter data. PLoS ONE 9(5), 1–11 (2014). https://doi.org/10.1371/journal.pone.0095809

    Article  Google Scholar 

  5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. Computer Science. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Katragadda, S., Virani, S., Benton, R., Raghavan, V.: Detection of event onset using Twitter, pp. 1539–1546. IEEE, July 2016. https://doi.org/10.1109/IJCNN.2016.7727381

  7. Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist. 11(1–2), 22–31 (1968)

    Google Scholar 

  8. Luhn, H.P.: Key word-in-context index for technical literature (KWIC index). Am. Doc. 11(4), 288–295 (1960). https://doi.org/10.1002/asi.5090110403

    Article  Google Scholar 

  9. de Mello, R.F., Rios, R.A., Pagliosa, P.A., Lopes, C.S.: Concept drift detection on social network data using cross-recurrence quantification analysis. Chaos: Interdisc. J. Nonlinear Sci. 28(8), 085719 (2018). https://doi.org/10.1063/1.5024241

    Article  Google Scholar 

  10. de Mello, R.F., Vaz, Y., Ferreira, C.H.G., Bifet, A.: On learning guarantees to unsupervised concept drift detection on data streams. Expert Syst. Appl. 117, 90–102 (2019). https://doi.org/10.1016/j.eswa.2018.08.054

    Article  Google Scholar 

  11. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph metrics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. UCS, pp. 15–40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7_2

    Chapter  Google Scholar 

  12. Nunes, M., Vieira, F., Zavaglia, C., Sossolote, C., Hernandez, J.: The design of a Lexicon for Brazilian Portuguese: lessons learned and perspectives. In: The Proceedings of the II Workshop on Computational Processing of Written and Spoken Portuguese, pp. 61–70 (1996)

    Google Scholar 

  13. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84(1), 016105 (2011)

    Article  Google Scholar 

  14. Rios, R.A., Lopes, C.S., Sikansi, F.H.G., Pagliosa, P.A., de Mello, R.F.: Analyzing the public opinion on the Brazilian political and corruption issues. In: 2017 Brazilian Conference on Intelligent Systems (BRACIS), pp. 13–18, October 2017. https://doi.org/10.1109/BRACIS.2017.37

  15. Rios, R.A., Pagliosa, P.A., Ishii, R.P., de Mello, R.F.: TSViz: a data stream architecture to online collect, analyze, and visualize tweets. In: Proceedings of the Symposium on Applied Computing (SAC 2017), pp. 1031–1036. ACM, New York (2017). https://doi.org/10.1145/3019612.3019811

  16. Schlimmer, J.C., Granger Jr., R.H.: Incremental learning from noisy data. Mach. Learn. 1(3), 317–354 (1986). https://doi.org/10.1023/A:1022810614389

    Article  Google Scholar 

  17. Silva, T.C., Zhao, L.: Machine Learning in Complex Networks, vol. 2016. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-17290-3

    Book  MATH  Google Scholar 

  18. Smith, A., Anderson, M.: Social media use in 2018. Technical report, Pew Research Center, Washington, D.C., March 2018

    Google Scholar 

  19. Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings of the 14th Conference on Computational Linguistics (COLING 1992), vol. 4, pp. 1106–1110. Association for Computational Linguistics, Stroudsburg (1992). https://doi.org/10.3115/992424.992434

  20. Wilson, R.: Introduction to Graph Theory. Longman (1996)

    Google Scholar 

Download references

Acknowledgment

This work was supported by CAPES (Coordination for the Improvement of Higher Education Personnel – Brazilian federal government agency), FAPESP (São Paulo Research Foundation) under the grant number 2013/07375-0 and INCT-DD (Instituto Nacional de Ciência & Tecnologia em Democracia Digital). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of CAPES, FAPESP, and INCT-DD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Rios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

dos Santos, V.M.G., de Mello, R.F., Nogueira, T., Rios, R.A. (2020). Quantifying Temporal Novelty in Social Networks Using Time-Varying Graphs and Concept Drift Detection. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics