[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

COMe-SEE: Cross-modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

Zero-shot learning, in spite of its recent popularity, remains an unexplored area for medical image analysis. We introduce a first-of-its-kind generalized zero-shot learning (GZSL) framework that utilizes information from two different imaging modalities (CT and x-ray) for the diagnosis of chest radiographs. Our model makes use of CT radiology reports to create a semantic space consisting of signatures corresponding to different chest diseases and conditions. We introduce a CrOss-Modality Semantic Embedding Ensemble (COMe-SEE) for zero-shot diagnosis of chest x-rays by relating an input x-ray to a signature in the semantic space. The ensemble, designed using a novel semantic saliency preserving autoencoder, utilizes the visual and the semantic saliency to facilitate GZSL. The use of an ensemble not only helps in dealing with noise but also makes our model useful across different datasets. Experiments on two publicly available datasets show that the proposed model can be trained using one dataset and still be applied to data from another source for zero-shot diagnosis of chest x-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee, I., Madhavan, S., Goldman, R.E., Rubin, D.L.: Intelligent word embeddings of free-text radiology reports. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 411. American Medical Informatics Association (2017)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Dajac, J., Kamdar, J., Moats, A., Nguyen, B.: To screen or not to screen: low dose computed tomography in comparison to chest radiography or usual care in reducing morbidity and mortality from lung cancer. Cureus 8(4), e589 (2016). https://doi.org/10.7759/cureus.589

    Article  Google Scholar 

  4. Demner-Fushman, D., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc. 23(2), 304–310 (2015)

    Article  Google Scholar 

  5. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  6. Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 801–810 (2019)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3174–3183 (2017)

    Google Scholar 

  9. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based image retrieval. In: ESANN, vol. 1, p. 2 (2011)

    Google Scholar 

  10. Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  11. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)

    Google Scholar 

  12. Rong, X.: word2vec parameter learning explained. arXiv preprint arXiv:1411.2738 (2014)

  13. Sariyildiz, M.B., Cinbis, R.G.: Gradient matching generative networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2168–2178 (2019)

    Google Scholar 

  14. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  15. Wang, X., Peng, Y., Lu, L., Lu, Z., Summers, R.M.: TieNet: text-image embedding network for common thorax disease classification and reporting in chest X-rays. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9049–9058 (2018)

    Google Scholar 

Download references

Acknowledgment

This project was supported by the Intramural Research Programs of the National Institutes of Health, Clinical Center and National Library of Medicine. We thank NVIDIA for GPU card donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Paul .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 129 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, A. et al. (2020). COMe-SEE: Cross-modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics