[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Approach Based on Region Growing Algorithm for Liver and Spleen Segmentation from CT Scans

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12463))

Included in the following conference series:

Abstract

In this paper, we propose a novel approach to adapt 2D region growing algorithms to volumetric segmentation of liver and spleen from Computed Tomography (CT) scans. Abdominal organ segmentation is an essential and time-consuming task in clinical radiology. The possibility to implement a semi-automatic segmentation system could speed up the time required to label the images and to improve the delineation results, minimizing both intra- and inter-operator variability.

The proposed region growing algorithm exploits an initial seed point to perform the first slice-wise segmentation. Then, starting from this area, all other seeds are automatically discovered taking advantage of two data structures that we called Moving Average Seed Heatmap (MASH) and Area Union Map (AUM). The implemented mechanism avoids the choice of unsuitable seeds and the exclusion of irrelevant organs and tissues from the CT scan.

We assessed the validity of the proposed liver and spleen segmentation method on two publicly available datasets: SLIVER07 and Medical Segmentation Decathlon Task 09 (MSD 09), respectively.

The proposed method allowed us to obtain promising results for both liver and spleen segmentation, with a Dice Coefficient higher than 93% for the liver segmentation task and a Dice Coefficient greater than 92% for the spleen segmentation task on the designated validation sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunetti, A., Carnimeo, L., Trotta, G.F., Bevilacqua, V.: Computer-assisted frameworks for classification of liver, breast and blood neoplasias via neural networks: a survey based on medical images. Neurocomputing 335, 274–298 (2019). https://doi.org/10.1016/j.neucom.2018.06.080

    Article  Google Scholar 

  2. Gambino, O., Vitabile, S., Lo Re, G., La Tona, G., Librizzi, S., Pirrone, R., et al.: Automatic volumetric liver segmentation using texture based region growing. In: CISIS 2010 - 4th International Conference on Complex, Intelligent and Software Intensive Systems, pp. 146–152 (2010). https://doi.org/10.1109/cisis.2010.118

  3. Arjun, P., Monisha, M.K., Mullaiyarasi, A., Kavitha, G.: Analysis of the liver in CT images using an improved region growing technique. In: 2015 International Conference on Industrial Instrumentation and Control (ICIC), pp. 1561–1566 (2015)

    Google Scholar 

  4. Lu, X., Wu, J., Ren, X., Zhang, B., Li, Y.: The study and application of the improved region growing algorithm for liver segmentation. Optik (Stuttg) 125, 2142–2147 (2014)

    Article  Google Scholar 

  5. Mostafa, A., Elfattah, M.A., Fouad, A., Hassanien, A.E., Hefny, H., Kim, T.H.: Region growing segmentation with iterative K-means for CT liver images. In: Proceedings - 2015 4th International Conference on Advanced Information Technology and Sensor Application, AITS 2015, pp. 88–91 (2016). https://doi.org/10.1109/aits.2015.31

  6. Arica, S., Avşar, T.S., Erbay, G.: A plain segmentation algorithm utilizing region growing technique for automatic partitioning of computed tomography liver images. In: 2018 Medical Technologies National Congress TIPTEKNO 2018, pp. 8–11 (2018). https://doi.org/10.1109/tiptekno.2018.8597108

  7. Kumar, S.S., Moni, R.S., Rajeesh, J.: Automatic segmentation of liver and tumor for CAD of liver. J. Adv. Inf. Technol. 2, 63–70 (2011)

    Google Scholar 

  8. Yan, Z., Wang, W., Yu, H., Huang, J.: Based on pre-treatment and region growing segmentation method of liver. In: 2010 3rd International Congress on Image and Signal Processing, pp. 1338–1341 (2010)

    Google Scholar 

  9. Huang, J., Qu, W., Meng, L., Wang, C.: Based on statistical analysis and 3D region growing segmentation method of liver. In: 2011 3rd International Conference on Advanced Computer Control, pp. 478–482 (2011)

    Google Scholar 

  10. Lakshmipriya, B., Jayanthi, K., Pottakkat, B., Ramkumar, G.: Liver segmentation using bidirectional region growing with edge enhancement in NSCT domain. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–5 (2018)

    Google Scholar 

  11. Rafiei, S., Karimi, N., Mirmahboub, B., Najarian, K., Felfeliyan, B., Samavi, S., et al.: Liver segmentation in abdominal CT images using probabilistic atlas and adaptive 3D region growing. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6310–6313 (2019)

    Google Scholar 

  12. Zhou, Z., Xue-Chang, Z., Si-Ming, Z., Hua-Fei, X., Yue-Ding, S.: Semi-automatic liver segmentation in CT images through intensity separation and region growing. Procedia Comput. Sci. 131, 220–225 (2018). https://doi.org/10.1016/j.procs.2018.04.206

    Article  Google Scholar 

  13. Chen, Y., Wang, Z., Zhao, W., Yang, X.: Liver segmentation from CT images based on region growing method. In: 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4 (2009)

    Google Scholar 

  14. Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.): The 1st International Conference on Advanced Intelligent System and Informatics (AISI 2015), November 28–30, 2015, Beni Suef, Egypt. AISC, vol. 407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26690-9

    Book  Google Scholar 

  15. Elmorsy, S.A., Abdou, M.A., Hassan, Y.F., Elsayed, A.: K3. A region growing liver segmentation method with advanced morphological enhancement. In: 2015 32nd National Radio Science Conference (NRSC), pp. 418–425 (2015)

    Google Scholar 

  16. Vezhnevets, V., Konouchine, V.: GrowCut- interactive multi-label N-D image segmentation by cellular automata. In: GraphiCon 2005 - International Conference on Computer Graphics and Vision, Proceedings (2005)

    Google Scholar 

  17. Czipczer, V., Manno-Kovacs, A.: Automatic liver segmentation on CT images combining region-based techniques and convolutional features. In: 2019 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2019)

    Google Scholar 

  18. Bevilacqua, V., Brunetti, A., Trotta, G.F., Dimauro, G., Elez, K., Alberotanza, V., et al.: A novel approach for Hepatocellular Carcinoma detection and classification based on triphasic CT Protocol. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings (2017). https://doi.org/10.1109/cec.2017.7969527

  19. Bevilacqua, V., et al.: Synthesis of a neural network classifier for hepatocellular carcinoma grading based on triphasic CT images. In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. (eds.) RTIP2R 2016. CCIS, vol. 709, pp. 356–368. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4859-3_32

    Chapter  Google Scholar 

  20. Xu, L., Zhu, Y., Zhang, Y., Yang, H.: Liver segmentation based on region growing and level set active contour model with new signed pressure force function. Optik (Stuttg) 202, 163 (2020). https://doi.org/10.1016/j.ijleo.2019.163705

    Article  Google Scholar 

  21. Mihaylova, A., Georgieva, V.: Spleen segmentation in MRI sequence images using template matching and active contours. Procedia Comput. Sci. 131, 15–22 (2018)

    Article  Google Scholar 

  22. Mihaylova, A., Georgieva, V., Petrov, P.: Multistage approach for automatic spleen segmentation in MRI sequences. Int. J. Reason. Intell. Syst. 12, 128 (2020). https://doi.org/10.1504/IJRIS.2020.106806

    Article  Google Scholar 

  23. Behrad, A., Masoumi, H.: Automatic spleen segmentation in MRI images using a combined neural network and recursive watershed transform. In: 10th Symposium on Neural Network Applications in Electrical Engineering, pp. 63–67 (2010)

    Google Scholar 

  24. Jiang, H., Ma, Z., Zhang, B., Zhang, Y.: A spleen segmentation method based on PCA-ISO. In: 2011 6th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), pp. 928–933 (2011)

    Google Scholar 

  25. Gauriau, R., Ardori, R., Lesage, D., Bloch, I.: Multiple template deformation application to abdominal organ segmentation. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 359–362 (2015)

    Google Scholar 

  26. Soroushmehr, S.M.R., Davuluri, P., Molaei, S., Hargraves, R.H., Tang, Y., Cockrell, C.H., et al.: Spleen segmentation and assessment in CT images for traumatic abdominal injuries. J. Med. Syst. 39, 87 (2015)

    Article  Google Scholar 

  27. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 1958–1965. IEEE (2006). https://doi.org/10.1109/ijcnn.2006.246940

  28. Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse planning in coplanar radiotherapy. Image Vis. Comput. 25, 196–203 (2007). https://doi.org/10.1016/j.imavis.2006.01.027

    Article  MATH  Google Scholar 

  29. Bevilacqua, V., Pacelli, V., Saladino, S.: A novel multi objective genetic algorithm for the portfolio optimization. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 186–193. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24728-6_25

    Chapter  Google Scholar 

  30. Pan, Z., Lu, J.: A Bayes-based region-growing algorithm for medical image segmentation. Comput. Sci. Eng. 9, 32–38 (2007). https://doi.org/10.1109/MCSE.2007.67

    Article  Google Scholar 

  31. Cordella, L.P., De Stefano, C., Fontanella, F., Scotto di Freca, A.: A weighted majority vote strategy using Bayesian networks. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8157, pp. 219–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41184-7_23

    Chapter  Google Scholar 

  32. De Stefano, C., Fontanella, F., Scotto di Freca, A.: A novel Naive Bayes voting strategy for combining classifiers. In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 467–472. IEEE (2012). https://doi.org/10.1109/icfhr.2012.166

  33. De Stefano, C., Fontanella, F., Marrocco, C., di Freca, A.S.: A hybrid evolutionary algorithm for Bayesian networks learning: an application to classifier combination. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 221–230. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-2_23

    Chapter  Google Scholar 

  34. Paviglianiti, A., Randazzo, V., Pasero, E., Vallan, A.: Noninvasive arterial blood pressure estimation using ABPNet and VITAL-ECG. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5 (2020)

    Google Scholar 

  35. Heimann, T., Van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28, 1251–1265 (2009). https://doi.org/10.1109/TMI.2009.2013851

    Article  Google Scholar 

  36. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken, B., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms (2019)

    Google Scholar 

  37. Edman, M.: Segmentation using a region growing algorithm. Insight J. 5672, 0–2 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Brunetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prencipe, B., Altini, N., Cascarano, G.D., Guerriero, A., Brunetti, A. (2020). A Novel Approach Based on Region Growing Algorithm for Liver and Spleen Segmentation from CT Scans. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics