[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Construction Task Allocation Through the Collective Perception of a Dynamic Environment

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2020)

Abstract

Building structures is a remarkable collective process but its automation remains an open challenge. Robot swarms provide a promising solution to this challenge. However, collective construction involves a number of difficulties regarding efficient robots allocation to the different activities, particularly if the goal is to reach an optimal construction rate. In this paper, we study an abstract construction scenario, where a swarm of robots is engaged in a collective perception process to estimate the density of building blocks around a construction site. The goal of this perception process is to maintain a minimum density of blocks available to the robots for construction. To maintain this density, the allocation of robots to the foraging task needs to be adjusted such that enough blocks are retrieved. Our results show a robust collective perception that enables the swarm to maintain a minimum block density under different rates of construction and foraging. Our approach leads the system to stabilize around a state in which the robots allocation allows the swarm to maintain a tile density that is close to or above the target minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Project on the Open Science Framework: https://osf.io/n7kr3/.

  2. 2.

    Complete run of a simulation (video): https://osf.io/6mgys/.

References

  1. Allwright, M., Bhalla, N., Dorigo, M.: Structure and markings as stimuli for autonomous construction. In: Eighteenth International Conference on Advanced Robotics - ICAR 2017, pp. 296–302. IEEE Press, Piscataway (2017)

    Google Scholar 

  2. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: Simulating multi-robot construction in ARGoS. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 188–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_15

    Chapter  Google Scholar 

  3. Allwright, M., Zhu, W., Dorigo, M.: An open-source multi-robot construction system. HardwareX 5, e00049 (2019)

    Article  Google Scholar 

  4. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_58

    Chapter  Google Scholar 

  5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  6. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agent. Multi-Agent Syst. 28(1), 101–125 (2012). https://doi.org/10.1007/s10458-012-9212-y

    Article  Google Scholar 

  7. Ebert, J., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective Bayesian decision-making in decentralized robot swarms. In: International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  8. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007). https://doi.org/10.1007/s11721-007-0004-y

    Article  Google Scholar 

  9. Gray, R., Franci, A., Srivastava, V., Leonard, N.E.: Multiagent decision-making dynamics inspired by honeybees. IEEE Trans. Control Netw. Syst. 5(2), 793–806 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gutiérrez, A., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Collective decision-making based on social odometry. Neural Comput. Appl. 19(6), 807–823 (2010). https://doi.org/10.1007/s00521-010-0380-x

    Article  Google Scholar 

  11. Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symmetry breaking in collective decision making. Neural Comput. Appl. 21(2), 207–218 (2012). https://doi.org/10.1007/s00521-010-0368-6

    Article  Google Scholar 

  12. Hamann, H., Valentini, G., Khaluf, Y., Dorigo, M.: Derivation of a micro-macro link for collective decision-making systems. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 181–190. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_18

    Chapter  Google Scholar 

  13. Huang, M., Seeley, T.: Multiple unloadings by nectar foragers in honey bees: a matter of information improvement or crop fullness? Insectes Sociaux 50(4), 330–339 (2003). https://doi.org/10.1007/s00040-003-0682-4

    Article  Google Scholar 

  14. Khaluf, Y.: Edge detection in static and dynamic environments using robot swarms. In: IEEE 11th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 81–90. IEEE (2017)

    Google Scholar 

  15. Khaluf, Y., Allwright, M., Rausch, I., Simoens, P., Dorigo, M.: Construction task allocation through the collective perception of a dynamic environment (2020). https://osf.io/n7kr3/

  16. Khaluf, Y., Birattari, M., Hamann, H.: A swarm robotics approach to task allocation under soft deadlines and negligible switching costs. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS (LNAI), vol. 8575, pp. 270–279. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08864-8_26

    Chapter  Google Scholar 

  17. Khaluf, Y., Dorigo, M.: Modeling robot swarms using integrals of birth-death processes. ACM Trans. Auton. Adapt. Syst. (TAAS) 11(2), 1–16 (2016)

    Article  Google Scholar 

  18. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability. Swarm Intell. 11(2), 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

    Article  Google Scholar 

  19. Khaluf, Y., Rammig, F.: Task allocation strategy for time-constrained tasks in robots swarms. In: Artificial Life Conference Proceedings, vol. 13, pp. 737–744. MIT Press (2013)

    Google Scholar 

  20. Kim, S.H., Whitt, W.: Choosing arrival process models for service systems: tests of a nonhomogeneous poisson process. Naval Res. Logist. (NRL) 61(1), 66–90 (2014)

    Article  MathSciNet  Google Scholar 

  21. Meyer, B.: Optimal information transfer and stochastic resonance in collective decision making. Swarm Intell. 11(2), 131–154 (2017). https://doi.org/10.1007/s11721-017-0136-7

    Article  Google Scholar 

  22. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327 (2011)

    Article  Google Scholar 

  23. Pais, D., Hogan, P.M., Schlegel, T., Franks, N.R., Leonard, N.E., Marshall, J.A.: A mechanism for value-sensitive decision-making. PloS One 8(9), e73216 (2013)

    Article  Google Scholar 

  24. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., Birattari, M.: Task partitioning in swarms of robots: an adaptive method for strategy selection. Swarm Intell. 5(3–4), 283–304 (2011). https://doi.org/10.1007/s11721-011-0060-1

    Article  Google Scholar 

  25. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic environments. Swarm Intell. 13(3–4), 217–243 (2019). https://doi.org/10.1007/s11721-019-00169-8

    Article  Google Scholar 

  26. Ratnieks, F.L., Anderson, C.: Task partitioning in insect societies. ii. use of queueing delay information in recruitment. Am. Nat. 154(5), 536–548 (1999)

    Article  Google Scholar 

  27. Rausch, I., Khaluf, Y., Simoens, P.: Collective decision-making on triadic graphs. In: Barbosa, H., Gomez-Gardenes, J., Gonçalves, B., Mangioni, G., Menezes, R., Oliveira, M. (eds.) Complex Networks XI. SPC, pp. 119–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40943-2_11

    Chapter  Google Scholar 

  28. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intell. 9(2–3), 75–102 (2015). https://doi.org/10.1007/s11721-015-0105-y

    Article  Google Scholar 

  29. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PloS One 10(10), e0140950 (2015)

    Article  Google Scholar 

  30. Schmickl, T., Möslinger, C., Crailsheim, K.: Collective perception in a robot swarm. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp. 144–157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71541-2_10

    Chapter  Google Scholar 

  31. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 541–549 (2018)

    Google Scholar 

  32. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)

    Article  Google Scholar 

  33. Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in a multi-robot network: from abstract models to empirical validation. IEEE Robot. Autom. Lett. 1(1), 348–353 (2016)

    Article  Google Scholar 

  34. Valentini, G., Hamann, H.: Time-variant feedback processes in collective decision-making systems: influence and effect of dynamic neighborhood sizes. Swarm Intell. 9(2–3), 153–176 (2015). https://doi.org/10.1007/s11721-015-0108-8

    Article  Google Scholar 

  35. Valentini, G.: Achieving Consensus in Robot Swarms. SCI, vol. 706. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53609-5

    Book  MATH  Google Scholar 

  36. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  37. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016)

    Article  Google Scholar 

  38. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Article  Google Scholar 

  39. Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 846009. Marco Dorigo acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara Khaluf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khaluf, Y., Allwright, M., Rausch, I., Simoens, P., Dorigo, M. (2020). Construction Task Allocation Through the Collective Perception of a Dynamic Environment. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics