[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancements to Lazard’s Method for Cylindrical Algebraic Decomposition

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

In 1994 Daniel Lazard proposed an improved method for constructing a cylindrical algebraic decomposition (CAD) from a set of polynomials, which recent work has, finally, fully validated. Lazard’s method works for any set of input polynomials, but is less efficient than the method of Brown (2001) which, however, fails for input sets that are not “well-oriented”. The present work improves Lazard’s method so that it is as efficient for well-oriented input as Brown’s method, while retaining its infallibility. Justifying these improvements requires novel and non-trivial mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The system \(a c - 1 = 0 \wedge a c + b^2 = 0\) is easily shown to be unsatisfiable by a number of means, including simply substituting for linearly occurring variables.

References

  1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

    Article  MathSciNet  Google Scholar 

  2. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. J. Symbolic Comput. 76, 1–35 (2016)

    Article  MathSciNet  Google Scholar 

  3. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symbolic Comput. 32, 447–465 (2001)

    Article  MathSciNet  Google Scholar 

  4. Brown, C. W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: ISSAC 2007: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 54–60. ACM, New York (2007)

    Google Scholar 

  5. Caviness, B., Johnson, J.R. (Eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Wien (1998). https://doi.org/10.1007/978-3-7091-9459-1

  6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

  7. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition - twenty years of progress. In [5]

    Google Scholar 

  8. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symbolic Comput. 12, 299–328 (1991)

    Article  MathSciNet  Google Scholar 

  9. Cowen-Rivers, A.I., England, M.: Towards incremental cylindrical algebraic decomposition. In: Bigatti, A., Brain, M. (Eds.) Proceedings of 3rd Workshop on Satisfiability Checking and Symbolic Computation 2018. No. 2189 in CEUR Workshop Proceedings, pp. 3–18. http://ceur-ws.org/Vol-2189/

  10. Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: ISSAC 1990: Proceedings of the 1990 International Symposium on Symbolic and Algebraic Computation, pp. 261–264. ACM Press, New York (1990). Reprinted in [5]

    Google Scholar 

  11. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

    Chapter  Google Scholar 

  12. Kremer, G., Abraham, E.: Fully incremental cylindrical algebraic decomposition. J. Symbolic Comput. 100, 11–37 (2020)

    Article  MathSciNet  Google Scholar 

  13. Lazard, D.: An improved projection for cylindrical algebraic decomposition. Algebraic Geometry and its Applications. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-2628-4_29

    Chapter  Google Scholar 

  14. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition of three-dimensional space. J. Symbolic Comput. 5, 141–161 (1988)

    Article  MathSciNet  Google Scholar 

  15. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In [5]

    Google Scholar 

  16. McCallum, S.: On projection in CAD-based quantifier elimination with equational constraint. In: Dooley, S. (ed.) Proceedings of International Symposium on Symbolic and Algebraic Computation ISSAC 1999, pp. 145–149. ACM Press, New York (1999)

    Google Scholar 

  17. McCallum, S., Hong, H.: On using Lazard’s projection in CAD construction. J. Symbolic Comput. 72, 65–81 (2016)

    Article  MathSciNet  Google Scholar 

  18. McCallum, S., Parusiński, A., Paunescu, L.: Validity proof of Lazard’s method for CAD construction. J. Symbolic Comput. 92, 52–69 (2019)

    Article  MathSciNet  Google Scholar 

  19. Strzebonski, A.: Solving systems of strict polynomial inequalities. J. Symbolic Comput. 29, 471–480 (2000)

    Article  MathSciNet  Google Scholar 

  20. Strzebonski, A.: Divide-and-conquer computation of cylindrical algebraic decomposition. arXiv:1402.0622 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brown, C.W., McCallum, S. (2020). Enhancements to Lazard’s Method for Cylindrical Algebraic Decomposition. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics