[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Visual Tracking by TridentAlign and Context Embedding

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12623))

Included in the following conference series:

Abstract

Recent advances in Siamese network-based visual tracking methods have enabled high performance on numerous tracking benchmarks. However, extensive scale variations of the target object and distractor objects with similar categories have consistently posed challenges in visual tracking. To address these persisting issues, we propose novel TridentAlign and context embedding modules for Siamese network-based visual tracking methods. The TridentAlign module facilitates adaptability to extensive scale variations and large deformations of the target, where it pools the feature representation of the target object into multiple spatial dimensions to form a feature pyramid, which is then utilized in the region proposal stage. Meanwhile, context embedding module aims to discriminate the target from distractor objects by accounting for the global context information among objects. The context embedding module extracts and embeds the global context information of a given frame into a local feature representation such that the information can be utilized in the final classification stage. Experimental results obtained on multiple benchmark datasets show that the performance of the proposed tracker is comparable to that of state-of-the-art trackers, while the proposed tracker runs at real-time speed. (Code available on https://github.com/JanghoonChoi/TACT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  3. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  4. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional Siamese networks for object tracking. arXiv preprint arXiv:1606.09549 (2016)

  5. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: CVPR (2018)

    Google Scholar 

  6. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: CVPR (2019)

    Google Scholar 

  7. Zhang, Z., Peng, H.: Deeper and wider Siamese networks for real-time visual tracking. In: CVPR (2019)

    Google Scholar 

  8. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE TPAMI 37, 1834–1848 (2015)

    Article  Google Scholar 

  9. Čehovin, L., Leonardis, A., Kristan, M.: Visual object tracking performance measures revisited. IEEE TIP 25, 1261–1274 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR (2019)

    Google Scholar 

  11. Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 310–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_19

    Chapter  Google Scholar 

  12. Valmadre, J., et al.: Long-term tracking in the wild: a benchmark. In: ECCV (2018)

    Google Scholar 

  13. Huang, L., Zhao, X., Huang, K.: GlobalTrack: a simple and strong baseline for long-term tracking. In: AAAI (2019)

    Google Scholar 

  14. Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam R-CNN: visual tracking by re-detection. In: CVPR (2020)

    Google Scholar 

  15. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE TPAMI 37, 1904–1916 (2015)

    Article  Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  18. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: ICCV (2019)

    Google Scholar 

  19. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR (2015)

    Google Scholar 

  20. Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE TPAMI 1 (2019). https://doi.org/10.1109/tpami.2019.2957464

  21. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: NIPS (2013)

    Google Scholar 

  22. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR (2015)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Jung, I., Son, J., Baek, M., Han, B.: Real-time MDNet. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 89–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_6

    Chapter  Google Scholar 

  25. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  26. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE TPAMI 37, 583–596 (2015)

    Article  Google Scholar 

  27. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)

    Google Scholar 

  28. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  29. Danelljan, M., Bhat, G., Khan, F., Felsberg, M.: ECO: efficient convolution operators for tracking. In: CVPR (2017)

    Google Scholar 

  30. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: ICCV Workshop (2015)

    Google Scholar 

  31. Bhat, G., Johnander, J., Danelljan, M., Shahbaz Khan, F., Felsberg, M.: Unveiling the power of deep tracking. In: ECCV (2018)

    Google Scholar 

  32. Xu, T., Feng, Z.H., Wu, X.J., Kittler, J.: Joint group feature selection and discriminative filter learning for robust visual object tracking. In: ICCV (2019)

    Google Scholar 

  33. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: CVPR (2017)

    Google Scholar 

  34. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: ECCV (2018)

    Google Scholar 

  35. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  36. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: ICCV (2017)

    Google Scholar 

  37. Zhang, Y., Wang, L., Qi, J., Wang, D., Feng, M., Lu, H.: Structured Siamese network for real-time visual tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_22

    Chapter  Google Scholar 

  38. Fan, H., Ling, H.: Siamese cascaded region proposal networks for real-time visual tracking. In: CVPR (2019)

    Google Scholar 

  39. Li, P., Chen, B., Ouyang, W., Wang, D., Yang, X., Lu, H.: GradNet: gradient-guided network for visual object tracking. In: ICCV (2019)

    Google Scholar 

  40. Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time target-aware visual tracking. In: ICCV (2019)

    Google Scholar 

  41. Zhang, L., Gonzalez-Garcia, A., Weijer, J.V.D., Danelljan, M., Khan, F.S.: Learning the model update for Siamese trackers. In: ICCV (2019)

    Google Scholar 

  42. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: ICCV (2019)

    Google Scholar 

  43. Choi, J., et al.: Context-aware deep feature compression for high-speed visual tracking. In: CVPR (2018)

    Google Scholar 

  44. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: CVPR (2017)

    Google Scholar 

  45. Moudgil, A., Gandhi, V.: Long-term visual object tracking benchmark. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 629–645. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_40

    Chapter  Google Scholar 

  46. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: CVPR (2015)

    Google Scholar 

  47. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  48. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  49. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: FILM: visual reasoning with a general conditioning layer. In: AAAI (2018)

    Google Scholar 

  50. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  51. Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: YouTube-BoundingBoxes: a large high-precision human-annotated data set for object detection in video. In: CVPR (2017)

    Google Scholar 

  52. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. ICLR (2015)

    Google Scholar 

  53. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  54. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ATOM: accurate tracking by overlap maximization. In: CVPR (2019)

    Google Scholar 

  55. Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X.: ‘Skimming-perusal’ tracking: a framework for real-time and robust long-term tracking. In: ICCV (2019)

    Google Scholar 

  56. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

    Chapter  Google Scholar 

  57. Zhang, Y., Wang, D., Wang, L., Qi, J., Lu, H.: Learning regression and verification networks for long-term visual tracking. arXiv preprint arXiv:1809.04320 (2018)

  58. Zhu, G., Porikli, F., Li, H.: Beyond local search: tracking objects everywhere with instance-specific proposals. In: CVPR (2016)

    Google Scholar 

  59. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: CVPR (2016)

    Google Scholar 

  60. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE TPAMI 34, 1409–1422 (2011)

    Article  Google Scholar 

  61. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: CVPR (2019)

    Google Scholar 

  62. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  63. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by IITP grant funded by the Ministry of Science and ICT of Korea (No. 2017-0-01780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janghoon Choi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 50532 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, J., Kwon, J., Lee, K.M. (2021). Visual Tracking by TridentAlign and Context Embedding. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69532-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69531-6

  • Online ISBN: 978-3-030-69532-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics