Abstract
Recent advances in deep learning has lead to rapid developments in the field of image retrieval. However, the best performing architectures incur significant computational cost. The paper addresses this issue using knowledge distillation for metric learning problems. Unlike previous approaches, our proposed method jointly addresses the following constraints: i) limited queries to teacher model, ii) black box teacher model with access to the final output representation, and iii) small fraction of original training data without any ground-truth labels. In addition, the distillation method does not require the student and teacher to have same dimensionality. The key idea is to augment the original training set with additional samples by performing linear interpolation in the final output representation space. In low training sample settings, our approach outperforms the fully supervised baseline approach on ROxford5k and RParis6k with the least possible teacher supervision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_1
Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15
Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-retrieve: efficient regional aggregation for image search. In: Proceedings CVPR (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings CVPR (2016)
Yang, J., et al.: Quantization networks. In: Proceedings CVPR (2019)
Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings SIGKDD (2006)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Proceedings NIPSW (2015)
Chen, Y., Wang, N., Zhang, Z.: Darkrank: accelerating deep metric learning via cross sample similarities transfer. In: Proceedings AAAI (2018)
Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings CVPR (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: Proceedings ICLR (2018)
Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: Proceedings ICML (2019)
Wang, D., Li, Y., Wang, L., Gong, B.: Neural networks are more productive teachers than human raters: active mixup for data-efficient knowledge distillation from a blackbox model. In: Proceedings CVPR (2020)
Revaud, J., Almazán, J., Rezende, R.S., de Souza, C.R.: Learning with average precision: training image retrieval with a listwise loss. In: Proceedings ICCV (2019)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (2004)
Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings ICCV (2003)
Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 222–245 (2013)
Arandjelovic, R., Zisserman, A.: All about vlad. In: Proceedings CVPR (2013)
Perd’och, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: Proceedings CVPR (2009)
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings CVPRW (2014)
Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: CNN architecture for weakly supervised place recognition. In: Proceedings CVPR (2016)
Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting oxford and Paris: large-scale image retrieval benchmarking. In: Proceedings CVPR (2018)
Schonberger, J.L., Radenovic, F., Chum, O., Frahm, J.M.: From single image query to detailed 3D reconstruction. In: Proceedings CVPR (2015)
Perronnin, F., Larlus, D.: Fisher vectors meet neural networks: a hybrid classification architecture. In: Proceedings CVPR (2015)
Tolias, G., Sicre, R., Jegou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv:1511.05879 (2015)
Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_26
Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings CVPR (2016)
Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings CVPR (2017)
Breiman, L., Shang, N.: Born again trees. In: Citeseer (1996)
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)
Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)
Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label refinery: improving imagenet classification through label progression. arXiv preprint arXiv:1805.02641 (2018)
Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. arXiv preprint arXiv:1805.04770 (2018)
Tokozume, Y., Ushiku, Y., Harada, T.: Between-class learning for image classification. In: Proceedings CVPR (2018)
Cho, K., et al.: Retrieval-augmented convolutional neural networks against adversarial examples. In: Proceedings CVPR (2019)
Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE TPAMI (2018)
Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: Proceedings IJCAI (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings NIPS (2012)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2008, pp. 1–8. IEEE (2008)
Radenovic, F., Schonberger, J.L., Ji, D., Frahm, J.M., Chum, O., Matas, J.: From dusk till dawn: modeling in the dark. In: Proceedings CVPR (2016)
Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: Proceedings UAI (2018)
Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_55
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Laskar, Z., Kannala, J. (2021). Data-Efficient Ranking Distillation for Image Retrieval. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-69525-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69524-8
Online ISBN: 978-3-030-69525-5
eBook Packages: Computer ScienceComputer Science (R0)