[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Data-Efficient Ranking Distillation for Image Retrieval

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12622))

Included in the following conference series:

  • 1182 Accesses

Abstract

Recent advances in deep learning has lead to rapid developments in the field of image retrieval. However, the best performing architectures incur significant computational cost. The paper addresses this issue using knowledge distillation for metric learning problems. Unlike previous approaches, our proposed method jointly addresses the following constraints: i) limited queries to teacher model, ii) black box teacher model with access to the final output representation, and iii) small fraction of original training data without any ground-truth labels. In addition, the distillation method does not require the student and teacher to have same dimensionality. The key idea is to augment the original training set with additional samples by performing linear interpolation in the final output representation space. In low training sample settings, our approach outperforms the fully supervised baseline approach on ROxford5k and RParis6k with the least possible teacher supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_1

    Chapter  Google Scholar 

  2. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  3. Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-retrieve: efficient regional aggregation for image search. In: Proceedings CVPR (2019)

    Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings CVPR (2016)

    Google Scholar 

  6. Yang, J., et al.: Quantization networks. In: Proceedings CVPR (2019)

    Google Scholar 

  7. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings SIGKDD (2006)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Proceedings NIPSW (2015)

    Google Scholar 

  9. Chen, Y., Wang, N., Zhang, Z.: Darkrank: accelerating deep metric learning via cross sample similarities transfer. In: Proceedings AAAI (2018)

    Google Scholar 

  10. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings CVPR (2019)

    Google Scholar 

  11. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: Proceedings ICLR (2018)

    Google Scholar 

  12. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: Proceedings ICML (2019)

    Google Scholar 

  13. Wang, D., Li, Y., Wang, L., Gong, B.: Neural networks are more productive teachers than human raters: active mixup for data-efficient knowledge distillation from a blackbox model. In: Proceedings CVPR (2020)

    Google Scholar 

  14. Revaud, J., Almazán, J., Rezende, R.S., de Souza, C.R.: Learning with average precision: training image retrieval with a listwise loss. In: Proceedings ICCV (2019)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (2004)

    Google Scholar 

  16. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings ICCV (2003)

    Google Scholar 

  17. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 222–245 (2013)

    Google Scholar 

  18. Arandjelovic, R., Zisserman, A.: All about vlad. In: Proceedings CVPR (2013)

    Google Scholar 

  19. Perd’och, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: Proceedings CVPR (2009)

    Google Scholar 

  20. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings CVPRW (2014)

    Google Scholar 

  21. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  22. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: CNN architecture for weakly supervised place recognition. In: Proceedings CVPR (2016)

    Google Scholar 

  23. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting oxford and Paris: large-scale image retrieval benchmarking. In: Proceedings CVPR (2018)

    Google Scholar 

  24. Schonberger, J.L., Radenovic, F., Chum, O., Frahm, J.M.: From single image query to detailed 3D reconstruction. In: Proceedings CVPR (2015)

    Google Scholar 

  25. Perronnin, F., Larlus, D.: Fisher vectors meet neural networks: a hybrid classification architecture. In: Proceedings CVPR (2015)

    Google Scholar 

  26. Tolias, G., Sicre, R., Jegou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv:1511.05879 (2015)

  27. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_26

    Chapter  Google Scholar 

  28. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings CVPR (2016)

    Google Scholar 

  29. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings CVPR (2017)

    Google Scholar 

  30. Breiman, L., Shang, N.: Born again trees. In: Citeseer (1996)

    Google Scholar 

  31. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  32. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)

  33. Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label refinery: improving imagenet classification through label progression. arXiv preprint arXiv:1805.02641 (2018)

  34. Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. arXiv preprint arXiv:1805.04770 (2018)

  35. Tokozume, Y., Ushiku, Y., Harada, T.: Between-class learning for image classification. In: Proceedings CVPR (2018)

    Google Scholar 

  36. Cho, K., et al.: Retrieval-augmented convolutional neural networks against adversarial examples. In: Proceedings CVPR (2019)

    Google Scholar 

  37. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE TPAMI (2018)

    Google Scholar 

  38. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: Proceedings IJCAI (2019)

    Google Scholar 

  39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings NIPS (2012)

    Google Scholar 

  40. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  41. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  42. Radenovic, F., Schonberger, J.L., Ji, D., Frahm, J.M., Chum, O., Matas, J.: From dusk till dawn: modeling in the dark. In: Proceedings CVPR (2016)

    Google Scholar 

  43. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: Proceedings UAI (2018)

    Google Scholar 

  44. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_55

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Laskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laskar, Z., Kannala, J. (2021). Data-Efficient Ranking Distillation for Image Retrieval. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69525-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69524-8

  • Online ISBN: 978-3-030-69525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics