Abstract
Deep generative models, e.g., variational autoencoders and generative adversarial networks, result in latent representation of observed data. The low dimensionality of the latent space provides an ideal setting for analysing high-dimensional data that would otherwise often be infeasible to handle statistically. The linear Euclidean geometry of the high-dimensional data space pulls back to a nonlinear Riemannian geometry on latent space where classical linear statistical techniques are no longer applicable. We show how analysis of data in their latent space representation can be performed using techniques from the field of geometric statistics. Geometric statistics provide generalisations of Euclidean statistical notions including means, principal component analysis, and maximum likelihood estimation of parametric distributions. Introduction to estimation procedures on latent space are considered, and the computational complexity of using geometric algorithms with high-dimensional data addressed by training a separate neural network to approximate the Riemannian metric and cometric tensor capturing the shape of the learned data manifold.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shao, H., Kumar, A., Thomas Fletcher, P.: The Riemannian geometry of deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 315–323 (2018)
Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., van der Smagt, P.: Metrics for deep generative models. In: AISTAT 2018, November 2017
Arvanitidis, G., Hansen, L.K., Hauberg, S.: Latent space oddity: on the curvature of deep generative models. In: ICLR 2018. arXiv:1710.11379, October 2017
Yang, T., Arvanitidis, G., Fu, D., Li, X., Hauberg, S.: Geodesic clustering in deep generative models. arXiv:1809.04747, September 2018
Shukla, A., Uppal, S., Bhagat, S., Anand, S., Turaga, P.: Geometry of deep generative models for disentangled representations. In: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing, ser. ICVGIP 2018. New York, NY, USA. Association for Computing Machinery, pp. 1–8, December 2018
Grattarola, D., Livi, L., Alippi, C.: Adversarial autoencoders with constant-curvature latent manifolds. Appl. Soft Comput. 81, 105511 (2019)
Chen, N., Ferroni, F., Klushyn, A., Paraschos, A., Bayer, J., van der Smagt, P.: Fast approximate geodesics for deep generative models. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11728, pp. 554–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30484-3_45
Rey, L.A.P., Portegies, J., Menkovski, V.: Diffusion variational autoencoders. In: Twenty-Ninth International Joint Conference on Artificial Intelligence, vol. 3, pp. 2704–2710, July 2020
Arvanitidis, G., Hauberg, S., Schölkopf, B.: Geometrically enriched latent spaces. arXiv:2008.00565, August 2020
Skopek, O., Ganea, O.-E., Bécigneul, G.: Mixed-curvature variational autoencoders. arXiv:1911.08411, February 2020
Connor, M.C., Canal, G.H., Rozell, C.J.: Variational Autoencoder with Learned Latent Structure. arXiv:2006.10597, June 2020
Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)
Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)
Sommer, S., Svane, A.M.: Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. J. Geom. Mech. 9(3), 391–410 (2017)
Bhattacharya, A., Bhattacharya, R.: Nonparametric statistics on manifolds with applications to shape spaces, 0805.3282, May 2008
Kühnel, L., Sommer, S., Arnaudon, A.: Differential geometry and stochastic dynamics with deep learning numerics. Appl. Math. Comput. 356, 411–437 (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27. Curran Associates Inc., pp. 2672–2680 (2014)
Bengio, Y.: “Learning Deep Architectures for AI," foundations and trends®. Mach. Learn. 2(1), 1–127 (2009)
Huang, Z., Van Gool, L.: A Riemannian network for SPD matrix learning. In: AAAI-17. arXiv:1608.04233, August 2016
Frechet, M.: Les éléments aléatoires de nature quelconque dans un espace distancie. Ann. Inst. H. Poincaré 10, 215–310 (1948)
Nye, T.: Construction of distributions on tree-space via diffusion processes. Mini-Workshop: Asymptotic Statistics on Stratified Spaces, Mathematisches Forschungsinstitut Oberwolfach (2014)
Sommer, S., Arnaudon, A., Kuhnel, L., Joshi, S.: Bridge simulation and metric estimation on landmark manifolds. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 79–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_8
Pennec, X.: Barycentric subspace analysis on manifolds. arXiv:1607.02833, July 2016
Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2013). https://doi.org/10.1007/s10444-013-9308-1
Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Soc. (2002)
Delyon, B., Hu, Y.: Simulation of conditioned diffusion and application to parameter estimation. Stochastic Process. Appl. 116(11), 1660–1675 (2006)
Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic shape analysis. Found. Computat. Math. 19(3), 653–701 (2018). https://doi.org/10.1007/s10208-018-9394-z
Jalba, A., Wilkinson, M., Roerdink, J.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Process. 15(2), 331–341 (2006)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114, December 2013
Acknowledgment
The work presented in this paper was supported by the CSGB Centre for Stochastic Geometry and Advanced Bioimaging funded by a grant from the Villum foundation, the Villum Foundation grant 00022924, the Novo Nordisk Foundation grant NNF18OC0052000, and the NSF DMS grant number 1912030.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kühnel, L., Fletcher, T., Joshi, S., Sommer, S. (2021). Latent Space Geometric Statistics. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-68780-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68779-3
Online ISBN: 978-3-030-68780-9
eBook Packages: Computer ScienceComputer Science (R0)