[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Latent Space Geometric Statistics

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12666))

Included in the following conference series:

  • 2652 Accesses

Abstract

Deep generative models, e.g., variational autoencoders and generative adversarial networks, result in latent representation of observed data. The low dimensionality of the latent space provides an ideal setting for analysing high-dimensional data that would otherwise often be infeasible to handle statistically. The linear Euclidean geometry of the high-dimensional data space pulls back to a nonlinear Riemannian geometry on latent space where classical linear statistical techniques are no longer applicable. We show how analysis of data in their latent space representation can be performed using techniques from the field of geometric statistics. Geometric statistics provide generalisations of Euclidean statistical notions including means, principal component analysis, and maximum likelihood estimation of parametric distributions. Introduction to estimation procedures on latent space are considered, and the computational complexity of using geometric algorithms with high-dimensional data addressed by training a separate neural network to approximate the Riemannian metric and cometric tensor capturing the shape of the learned data manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shao, H., Kumar, A., Thomas Fletcher, P.: The Riemannian geometry of deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 315–323 (2018)

    Google Scholar 

  2. Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., van der Smagt, P.: Metrics for deep generative models. In: AISTAT 2018, November 2017

    Google Scholar 

  3. Arvanitidis, G., Hansen, L.K., Hauberg, S.: Latent space oddity: on the curvature of deep generative models. In: ICLR 2018. arXiv:1710.11379, October 2017

  4. Yang, T., Arvanitidis, G., Fu, D., Li, X., Hauberg, S.: Geodesic clustering in deep generative models. arXiv:1809.04747, September 2018

  5. Shukla, A., Uppal, S., Bhagat, S., Anand, S., Turaga, P.: Geometry of deep generative models for disentangled representations. In: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing, ser. ICVGIP 2018. New York, NY, USA. Association for Computing Machinery, pp. 1–8, December 2018

    Google Scholar 

  6. Grattarola, D., Livi, L., Alippi, C.: Adversarial autoencoders with constant-curvature latent manifolds. Appl. Soft Comput. 81, 105511 (2019)

    Article  Google Scholar 

  7. Chen, N., Ferroni, F., Klushyn, A., Paraschos, A., Bayer, J., van der Smagt, P.: Fast approximate geodesics for deep generative models. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11728, pp. 554–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30484-3_45

    Chapter  Google Scholar 

  8. Rey, L.A.P., Portegies, J., Menkovski, V.: Diffusion variational autoencoders. In: Twenty-Ninth International Joint Conference on Artificial Intelligence, vol. 3, pp. 2704–2710, July 2020

    Google Scholar 

  9. Arvanitidis, G., Hauberg, S., Schölkopf, B.: Geometrically enriched latent spaces. arXiv:2008.00565, August 2020

  10. Skopek, O., Ganea, O.-E., Bécigneul, G.: Mixed-curvature variational autoencoders. arXiv:1911.08411, February 2020

  11. Connor, M.C., Canal, G.H., Rozell, C.J.: Variational Autoencoder with Learned Latent Structure. arXiv:2006.10597, June 2020

  12. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  14. Sommer, S., Svane, A.M.: Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. J. Geom. Mech. 9(3), 391–410 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bhattacharya, A., Bhattacharya, R.: Nonparametric statistics on manifolds with applications to shape spaces, 0805.3282, May 2008

    Google Scholar 

  16. Kühnel, L., Sommer, S., Arnaudon, A.: Differential geometry and stochastic dynamics with deep learning numerics. Appl. Math. Comput. 356, 411–437 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27. Curran Associates Inc., pp. 2672–2680 (2014)

    Google Scholar 

  18. Bengio, Y.: “Learning Deep Architectures for AI," foundations and trends®. Mach. Learn. 2(1), 1–127 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Huang, Z., Van Gool, L.: A Riemannian network for SPD matrix learning. In: AAAI-17. arXiv:1608.04233, August 2016

  20. Frechet, M.: Les éléments aléatoires de nature quelconque dans un espace distancie. Ann. Inst. H. Poincaré 10, 215–310 (1948)

    MathSciNet  MATH  Google Scholar 

  21. Nye, T.: Construction of distributions on tree-space via diffusion processes. Mini-Workshop: Asymptotic Statistics on Stratified Spaces, Mathematisches Forschungsinstitut Oberwolfach (2014)

    Google Scholar 

  22. Sommer, S., Arnaudon, A., Kuhnel, L., Joshi, S.: Bridge simulation and metric estimation on landmark manifolds. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 79–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_8

    Chapter  Google Scholar 

  23. Pennec, X.: Barycentric subspace analysis on manifolds. arXiv:1607.02833, July 2016

  24. Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2013). https://doi.org/10.1007/s10444-013-9308-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Soc. (2002)

    Google Scholar 

  26. Delyon, B., Hu, Y.: Simulation of conditioned diffusion and application to parameter estimation. Stochastic Process. Appl. 116(11), 1660–1675 (2006)

    Article  MathSciNet  Google Scholar 

  27. Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic shape analysis. Found. Computat. Math. 19(3), 653–701 (2018). https://doi.org/10.1007/s10208-018-9394-z

    Article  MathSciNet  MATH  Google Scholar 

  28. Jalba, A., Wilkinson, M., Roerdink, J.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Process. 15(2), 331–341 (2006)

    Article  Google Scholar 

  29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114, December 2013

Download references

Acknowledgment

The work presented in this paper was supported by the CSGB Centre for Stochastic Geometry and Advanced Bioimaging funded by a grant from the Villum foundation, the Villum Foundation grant 00022924, the Novo Nordisk Foundation grant NNF18OC0052000, and the NSF DMS grant number 1912030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kühnel, L., Fletcher, T., Joshi, S., Sommer, S. (2021). Latent Space Geometric Statistics. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics