[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Environment Object Detection for Marine ARGO Drone by Deep Learning

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Aim of this work is to implement an environment object detection system for a marine drone. A Deep Learning based model for object detection is embedded on ARGO drone equipped with geophysical sensors and several on-board cameras. The marine drone, developed at iMTG laboratory in partnership with NEPTUN-IA laboratory, was designed to obtain high-resolution mapping of nearshore-to-foreshore sectors and equipped with a system able to detect and identify Ground Control Point (GCP) in real time. A Deep Neural Network is embedded on a Raspberry PI platform and it is adopted for developing the object detection module. Real experiments and comparisons are conducted for identifying GCP among the roughness and vegetation present in the seabed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DIST_POFESR_PAUN_Ricerca Progetto “Rete Intelligente dei Parchi Archeologici” (RIPA -PAUN).

References

  1. Ascione, A., et al.: Geomorphology of Naples and the Campi Flegrei: human and natural landscapes in a restless land. J. Maps, 1–11 (2020)

    Google Scholar 

  2. Aucelli, P., Cinque, A., Mattei, G., Pappone, G.: Historical sea level changes and effects on the coasts of Sorrento Peninsula (Gulf of Naples): New constrains from recent geoarchaeological investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 463, 112–125 (2016a)

    Article  Google Scholar 

  3. Aucelli, P., Cinque, A., Giordano, F., Mattei, G.: A geoarchaeological survey of the marine extension of the Roman archaeological site Villa del Pezzolo, Vico Equense, on the Sorrento Peninsula. Italy. Geoarchaeology 31(3), 244–252 (2016b)

    Article  Google Scholar 

  4. Aucelli, P.P.C., Cinque, A., Mattei, G., Pappone, G.: Late Holocene landscape evolution of the gulf of Naples (Italy) inferred from geoarchaeological data. J. Maps 13(2), 300–310 (2017)

    Article  Google Scholar 

  5. Aucelli, P., Cinque, A., Mattei, G., Pappone, G., Stefanile, M.: Coastal landscape evolution of Naples (Southern Italy) since the Roman period from archaeological and geomorphological data at Palazzo degli Spiriti site. Qua. Int. 483, 23–38 (2018a). https://doi.org/10.1016/j.quaint.2017.12.040

    Article  Google Scholar 

  6. Aucelli, P.P., Cinque, A., Mattei, G., Pappone, G., Stefanile, M.: First results on the coastal changes related to local sea level variations along the Puteoli sector (Campi Flegrei, Italy) during the historical times. Alp. Mediterr. Quat. 31, 13–16 (2018b)

    Google Scholar 

  7. Aucelli, P., Cinque, A., Mattei, G., Pappone, G., Rizzo, A.: Studying relative sea level change and correlative adaptation of coastal structures on submerged Roman time ruins nearby Naples (southern Italy). Quat. Int. 501, 328–348 (2019). https://doi.org/10.1016/j.quaint.2017.10.011

    Article  Google Scholar 

  8. Aucelli, P.P.C., et al.: Ancient Coastal Changes Due to Ground Movements and Human Interventions in the Roman Portus Julius (Pozzuoli Gulf, Italy): Results from Photogrammetric and Direct Surveys. Water 12(3), 658 (2020). https://doi.org/10.3390/w12030658

  9. Ciaramella, A., Nardone, D., Staiano, A.: Data integration by fuzzy similarity-based hierarchical clustering. BMC Bioinform. 21, 350 (2020)

    Article  Google Scholar 

  10. Ciaramella, A., Gianfico, M., Giunta, G.: Compressive sampling and adaptive dictionary learning for the packet loss recovery in audio multimedia streaming. Multimed. Tools Appl. 75(24), 17375–17392 (2016)

    Article  Google Scholar 

  11. Ciaramella, A., De Lauro, E., De Martino, S., Di Lieto, B., Falanga, M., Tagliaferri, R.: Characterization of Strombolian events by using independent component analysis. Nonlin. Process. Geophys. 11(4), 453–461 (2004)

    Article  Google Scholar 

  12. Giordano, F., Mattei, G., Parente, C., Peluso, F., Santamaria, R.: Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sensors (MDPI) 16(1), 41 (2016). https://doi.org/10.3390/s16010041

    Article  Google Scholar 

  13. Mattei, G., Troisi, S., Aucelli, P., Pappone, G., Peluso, F., Stefanile, M.: Sensing the Submerged Landscape of Nisida Roman Harbour in the Gulf of Naples from Integrated Measurements on a USV. Water 10(11), 1686 (2018a)

    Article  Google Scholar 

  14. Mattei, G., Troisi, S., Aucelli, P.P., Pappone, G., Peluso, F., Stefanile, M.: Multiscale reconstruction of natural and archaeological underwater landscape by optical and acoustic sensors. In: 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), pp. 46–49. IEEE (2018b)

    Google Scholar 

  15. Mattei, G., Rizzo, A., Anfuso, G., Aucelli, P.P.C., Gracia, F.J.: A tool for evaluating the archaeological heritage vulnerability to coastal processes: the case study of Naples Gulf (southern Italy). Ocean Coastal Manage. 179, 104876 (2019)

    Article  Google Scholar 

  16. Mattei, G., Aucelli, P.P., Caporizzo, C., Rizzo, A., Pappone, G.: New geomorphological and historical elements on morpho-evolutive trends and relative sea-level changes of Naples coast in the last 6000 years. Water 12(9), 2651 (2020)

    Article  Google Scholar 

  17. Pappone, G., Aucelli, P.P., Mattei, G., Peluso, F., Stefanile, M., Carola, A.: A detailed reconstruction of the roman Landscape and the submerged archaeological structure at “Castel dell’Ovo islet" (Naples, Southern Italy). Geosciences 9(4), 170 (2019)

    Article  Google Scholar 

  18. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  19. Howard, A.G.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  20. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Ren, S., He, K., Girshick, R.: Sun. Towards real-time object detection with region proposal networks, NIPS, Faster R-CNN (2015)

    Google Scholar 

  22. Szegedy, C.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

Download references

Acknowledgments

ARGO drone was funded by Distretto ad alta tecnologia per i beni culturali DATABENC, PON 03PE_00164 “Rete Intelligente dei Parchi Archeologici (RIPA - PAUN)”. The authors sincerely thanks Gallenoplastica Srl for the active collaboration in the hull construction. This paper also benefited from the discussion(s) at the Neptune meeting (INQUA CMP project 2003P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Ciaramella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciaramella, A., Perrotta, F., Pappone, G., Aucelli, P., Peluso, F., Mattei, G. (2021). Environment Object Detection for Marine ARGO Drone by Deep Learning. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics