[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Results of a Compromise Solution, Which Were Obtained on the Basis of the Method of Uncertain Lagrange Multipliers to Determine the Influence of Design Factors of the Elastic-Damping Mechanism in the Tractor Transmission

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1324))

Included in the following conference series:

  • 1149 Accesses

Abstract

The article is devoted to the research of a compromise solution for finding the optimal parameters of the Elastic Damping Mechanism (EDMṇ) in the 14 kN class tractor transmission. The tractor was part of three different machine-tractor units and performed the main agricultural operations: plowing, cultivation and sowing. The task was to define a single function (compromise solution), which can be used to describe the processes in the transmission when performing these operations. The Lagrange multiplier method was used to obtain a compromise solution. It was necessary to create one General mathematical model out of three mathematical models, which should correctly reflect the nature of the ongoing processes. It was necessary to determine the Lagrange multipliers λ1, λ2…λm for this purpose. All calculations were made in the software environment Maple and MatLab. Compromise problem solution was found. The extremum of the «transmission transparency degree» function is found based on Lagrange multipliers. A compromise model is obtained that expresses the influence of the main EDM parameters on the «transmission transparency degree». The values of factors included in the resulting Lagrange function are found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, B., Sun, D., Hu, M., Zhou, X., Liu, J., Wang, D.: Coordinated control of gear shifting process with multiple clutches for power-shift transmission. Mech. Mach. Theory 140, 274–291 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.06.009

    Article  Google Scholar 

  2. Chen, X., Hu, Q., Xu, Z., Zhu, C.: Numerical modeling and dynamic characteristics study of coupling vibration of multistage face gearsplanetary transmission. Mech. Sci. 10, 475–495 (2019). https://doi.org/10.5194/ms-10-475-2019

    Article  Google Scholar 

  3. Kirchner, M., Eberhard, P.: Simulation model of a gear synchronisation unit for application in a real-time HiL environment. Veh. Syst. Dyn. 55(5), 668–680 (2017). https://doi.org/10.1080/00423114.2016.1277025

    Article  Google Scholar 

  4. Guercioni, G.R., Vigliani, A.: Gearshift control strategies for hybrid electric vehicles: a comparison of powertrains equipped with automated manual transmissions and dual-clutch transmissions. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 233(11), 2761–2779 (2019). https://doi.org/10.1177/0954407018804120

    Article  Google Scholar 

  5. Zhu, S., Xu, G., Tkachev, A., Wang, L., Zhang, N.: Comparison of the road-holding abilities of a roll-plane hydraulically interconnected suspension system and an anti-roll bar system. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 231(11), 1540–1557 (2016). https://doi.org/10.1177/0954407016675995

    Article  Google Scholar 

  6. Sau, J., Monteil, J., Bouroche, M.: State-space linear stability analysis of platoons of cooperative vehicles. Transportmetrica B Transp. Dyn. 1–26 (2017).https://doi.org/10.1080/21680566.2017.1308846

  7. Kim, J.: Design of a compact 18-speed epicyclic transmission for a personal mobility vehicle. Int. J. Automot. Technol. 17(6), 977–982 (2016). https://doi.org/10.1007/s12239-016-0095-9

    Article  Google Scholar 

  8. Park, T., Lee, H.: Optimal supervisory control strategy for a transmission-mounted electric drive hybrid electric vehicle. Int. J. Automot. Technol. 20(4), 663–677 (2019). https://doi.org/10.1007/s12239-019-0063-2

    Article  Google Scholar 

  9. Chen, S., Zhang, B., Li, B., Zhang, N.: Dynamic characteristics analysis of vehicle incorporating hydraulically interconnected suspension system with dual accumulators. Shock Vib. 2018, 1–5 (2018). https://doi.org/10.1155/2018/6901423

    Article  Google Scholar 

  10. Ding, F., Zhang, N., Liu, J., Han, X.: Dynamics analysis and design methodology of roll-resistant hydraulically interconnected suspensions for tri-axle straight trucks. J. Franklin Inst. 353(17), 4620–4651 (2016). https://doi.org/10.1016/j.jfranklin.2016.08.016

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuznetsov, N.K., Iov, I.A., Iov, A.A.: Reducing of dynamic loads of excavator actuators. In: Journal of Physics: Conference Series, vol. 1210, no. 1, p. 012075. IOP Publishing (2019). https://doi.org/10.1088/1742-6596/1210/1/012075

  12. Ziyadi, M., Ozer, H., Kang, S., Al-Qadi, I.L.: Vehicle energy consumption and an environmental impact calculation model for the transportation infrastructure systems. J. Clean. Prod. 174, 424–436 (2018). https://doi.org/10.1016/j.jclepro.2017.10.292

    Article  Google Scholar 

  13. Melikov, I., Kravchenko, V., Senkevich, S., Hasanova, E., Kravchenko, L.: Traction and energy efficiency tests of oligomeric tires for category 3 tractors. In: IOP Conference Series: Earth and Environmental Science, vol. 403, p. 012126 (2019). https://doi.org/10.1088/1755-1315/403/1/012126

  14. Senkevich, S., Kravchenko, V., Duriagina, V., Senkevich, A., Vasilev, E.: Optimization of the parameters of the elastic damping mechanism in class 1, 4 tractor transmission for work in the main agricultural operations. In: Advances in Intelligent Systems and Computing, pp. 168–177 (2018). https://doi.org/10.1007/978-3-030-00979-3_17

  15. Senkevich, S.E., Sergeev, N.V., Vasilev, E.K., Godzhaev, Z.A., Babayev, V.: Use of an elastic-damping mechanism in the tractor transmission of a small class of traction (14 kN): Theoretical and Experimental Substantiation. In: Handbook of Advanced Agro-Engineering Technologies for Rural Business Development, pp. 149–179. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-7573-3.ch006

  16. Senkevich, S., Duriagina, V., Kravchenko, V., Gamolina, I., Pavkin, D.: Improvement of the numerical simulation of the machine-tractor unit functioning with an elastic-damping mechanism in the tractor transmission of a small class of traction (14 kN). In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing and Optimization. ICO 2019. Advances in Intelligent Systems and Computing, vol. 1072, pp. 204–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_20

  17. Senkevich, S.E., Lavrukhin, P.V., Senkevich, A.A., Ivanov, P.A., Sergeev, N.V.: Improvement of traction and coupling properties of the small class tractor for grain crop sowing by means of the hydropneumatic damping device. In: Kharchenko, V., Vasant, P. (eds.) Handbook of Research on Energy-Saving Technologies for Environmentally-Friendly Agricultural Development, pp. 1–27. IGI Global, Hershey (2020). https://doi.org/10.4018/978-1-5225-9420-8.ch001

  18. Senkevich, S., Kravchenko, V., Lavrukhin, P., Ivanov, P., Senkevich, A.: Theoretical study of the effect of an elastic-damping mechanism in the tractor transmission on a machine-tractor unit performance while sowing. In: Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering, pp. 423–463. IGI Global, Hershey (2020). https://doi.org/10.4018/978-1-7998-1216-6.ch017

  19. Nocedal, J., Wright, S.: Numerical Optimization, p. 664. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis, p. 580. Springer, Berlin (2015)

    MATH  Google Scholar 

  21. Malthe-Sorenssen, A.: Elementary Mechanics Using Matlab: A Modern Course Combining Analytical and Numerical Techniques, p. 590. Springer, Heidelberg (2015)

    Book  Google Scholar 

Download references

Acknowledgments

The team of authors expresses recognition for the organization of the Conference ICO'2020, Thailand, and personally Dr. Pandian Vasant. The authors are grateful to anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Senkevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senkevich, S., Ilchenko, E., Prilukov, A., Chaplygin, M. (2021). The Results of a Compromise Solution, Which Were Obtained on the Basis of the Method of Uncertain Lagrange Multipliers to Determine the Influence of Design Factors of the Elastic-Damping Mechanism in the Tractor Transmission. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-68154-8_14

Download citation

Publish with us

Policies and ethics