Abstract
We present a transformation-based method to achieve thermal face recognition. Given a thermal face, the proposed model transforms the input to a synthesized visible face, which is then used as a probe to compare with visible faces in the database. This transformation model is built on the basis of a generative adversarial network, mainly with the ideas of multi-scale discrimination and various loss functions like feature embedding, identity preservation, and facial landmark-guided texture synthesis. The evaluation results show that the proposed method outperforms the state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of CVPR, pp. 5967–5976 (2017)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of ECCV Workshops (2018)
Li, Y., Liu, S., Yang, J., Yang, M.: Generative face completion. In: Proceedings of CVPR, pp. 5892–5900 (2017)
Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of CVPR, pp. 8798–8807 (2018)
Mallat, K., Dugelay, J.: A benchmark database of visible and thermal paired face images across multiple variations. In: Proceedings of International Conference of the Biometrics Special Interest Group, pp. 1–5 (2018)
Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE TIFS 13, 2884–2896 (2018)
Sarfraz, M.S., Stiefelhagen, R.: Deep perceptual mapping for thermal to visible face recognition. In: Proceedings of BMVC (2015)
Saxena, S., Verbeek, J.: Heterogeneous face recognition with CNNs. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 483–491. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_40
Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp. 2672–2680 (2014)
Song, L., Zhang, M., Wu, X., He, R.: Adversarial discriminative heterogeneous face recognition. In: Proceedings of AAAI (2018)
Zhang, T., Wiliem, A., Yang, S., Lovell, B.C.: TV-GAN: generative adversarial network based thermal to visible face recognition. In: Proceedings of ICB (2018)
Mallat, K., Damer, N., Boutros, F., Kuijper, A., Dugelay, J.: Cross-spectrum thermal to visible face recognition based on cascaded image synthesis. In: Proceedings of ICB (2019)
Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: Proceedings of ICCV, pp. 1511–1520 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR (2015)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? In: Proceedings of ICCV, pp. 1021–1030 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of CVPR, pp. 4690–4699 (2019)
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6
Acknowledgment
This work was partially supported by Qualcomm Technologies, Inc. under the grant number B109-K027D, and by the Ministry of Science and Technology, Taiwan, under the grant 108-2221-E-006-227-MY3, 107-2923-E-194-003-MY3, and 109-2218-E-002-015.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chu, WT., Huang, PS. (2021). Thermal Face Recognition Based on Multi-scale Image Synthesis. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12572. Springer, Cham. https://doi.org/10.1007/978-3-030-67832-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-67832-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67831-9
Online ISBN: 978-3-030-67832-6
eBook Packages: Computer ScienceComputer Science (R0)