Abstract
Maritime road network is composed of detailed maritime routes and is vital in many applications such as threats detection, traffic control. However, the vessel trajectory data, or Automatic Identification System (AIS) data, are usually large in scale and collected with different sampling rates. And, what’s more, it is difficult to obtain enough accurate road networks as paired training datasets. It is a huge challenge to extract a complete maritime road network from such data that matches the actual route of the ship. In order to solve these problems, this paper proposes an unsupervised learning-based maritime road network extraction model T2I-CycleGAN based on CycleGAN. The method translates trajectory data into unpaired input samples for model training, and adds dense layer to the CycleGAN model to handle trajectories with different sampling rates. We evaluate the approach on real-world AIS datasets in various areas and compare the extracted results with the real ship coordinate data in terms of connectivity and details, achieving effectiveness beyond the most related work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agamennoni, G., Nieto, J.I., Nebot, E.M.: Robust inference of principal road paths for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 12(1), 298–308 (2011)
Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica 19(3), 601–632 (2015). https://doi.org/10.1007/s10707-014-0222-6
Arguedas, V.F., Pallotta, G., Vespe, M.: Automatic generation of geographical networks for maritime traffic surveillance. In: 17th International Conference on Information Fusion (FUSION), pp. 1–8 (2014)
Cao, L., Krumm, J.: From GPS traces to a routable road map. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 3–12 (2009)
Chen, C., Cheng, Y.: Roads digital map generation with multi-track GPS data. In: 2008 International Workshop on Geoscience and Remote Sensing, vol. 1, pp. 508–511 (2008)
Chen, C., Lu, C., Huang, Q., Yang, Q., Gunopulos, D., Guibas, L.: City-scale map creation and updating using GPS collections. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 1465–1474. ACM, New York (2016)
Chuanwei, L., Qun, S., Bing, C., Bowei, W., Yunpeng, Z., Li, X.: Road learning extraction method based on vehicle trajectory data. Acta Geodaetica et Cartographica Sinica 49(6), 692 (2020)
Dobrkovic, A., Iacob, M.E., van Hillegersberg, J.: Maritime pattern extraction and route reconstruction from incomplete AIS data. Int. J. Data Sci. Anal. 5(2), 111–136 (2018). https://doi.org/10.1007/s41060-017-0092-8
Ducruet, C., Notteboom, T.: The worldwide maritime network of container shipping: spatial structure and regional dynamics. Glob. Netw. 12(3), 395–423 (2012)
Engin, D., Genç, A., Kemal Ekenel, H.: Cycle-Dehaze: enhanced CycleGAN for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 825–833 (2018)
Etienne, L., Devogele, T., Bouju, A.: Spatio-temporal trajectory analysis of mobile objects following the same itinerary. Adv. Geo-Spatial Inf. Sci. 10, 47–57 (2012)
Fernandez Arguedas, V., Pallotta, G., Vespe, M.: Maritime traffic networks: from historical positioning data to unsupervised maritime traffic monitoring. IEEE Trans. Intell. Transp. Syst. 19(3), 722–732 (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hung, C.C., Peng, W.C., Lee, W.C.: Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 24(2), 169–192 (2015). https://doi.org/10.1007/s00778-011-0262-6
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Le Guillarme, N., Lerouvreur, X.: Unsupervised extraction of knowledge from S-AIS data for maritime situational awareness. In: Proceedings of the 16th International Conference on Information Fusion, pp. 2025–2032 (2013)
Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD 2007, pp. 593–604. ACM, New York (2007)
Li, J., Chen, W., Li, M., Zhang, K., Yajun, L.: The algorithm of ship rule path extraction based on the grid heat value. J. Comput. Res. Dev. 55(5), 908–919 (2018)
Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-scale, sparse GPS traces for map inference: comparison of approaches. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 669–677. ACM, New York (2012)
Lu, Y., Tai, Y.-W., Tang, C.-K.: Attribute-guided face generation using conditional CycleGAN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 293–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_18
Naserian, E., Wang, X., Dahal, K., Wang, Z., Wang, Z.: Personalized location prediction for group travellers from spatial-temporal trajectories. Future Gener. Comput. Syst. 83, 278–292 (2018)
Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6), 2218–2245 (2013)
Wen, R., Yan, W., Zhang, A.N., Chinh, N.Q., Akcan, O.: Spatio-temporal route mining and visualization for busy waterways. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 849–854 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ruan, S., et al.: Learning to generate maps from trajectories. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 890–897 (2020)
Shi, W., Shen, S., Liu, Y.: Automatic generation of road network map from massive GPS, vehicle trajectories. In: 2009 12th International IEEE Conference on Intelligent Transportation Systems, pp. 1–6 (2009)
Spiliopoulos, G., Zissis, D., Chatzikokolakis, K.: A big data driven approach to extracting global trade patterns. In: Doulkeridis, C., Vouros, G.A., Qu, Q., Wang, S. (eds.) MATES 2017. LNCS, vol. 10731, pp. 109–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73521-4_7
Stanojevic, R., Abbar, S., Thirumuruganathan, S., Chawla, S., Filali, F., Aleimat, A.: Robust road map inference through network alignment of trajectories. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 135–143. SIAM (2018)
Tang, L., Ren, C., Liu, Z., Li, Q.: A road map refinement method using Delaunay triangulation for big trace data. ISPRS Int. J. Geo-Inf. 6(2), 45 (2017)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
Wang, G., et al.: Adaptive extraction and refinement of marine lanes from crowdsourced trajectory data. Mobile Netw. Appl. 25, 1392–1404 (2020). https://doi.org/10.1007/s11036-019-01454-w
Wang, S., Wang, Y., Li, Y.: Efficient map reconstruction and augmentation via topological methods. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2015)
Wei, Y., Tinghua, A.: Road centerline extraction from crowdsourcing trajectory data. Geogr. Geo Inf. Sci. 32(3), 1–7 (2016)
Yan, W., Wen, R., Zhang, A.N., Yang, D.: Vessel movement analysis and pattern discovery using density-based clustering approach. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 3798–3806 (2016)
Yang, W., Ai, T.: The extraction of road boundary from crowdsourcing trajectory using constrained Delaunay triangulation. Acta Geodaetica Cartogr. Sin. 46(2), 237–245 (2017)
Yang, W., Ai, T., Lu, W.: A method for extracting road boundary information from crowdsourcing vehicle GPS trajectories. Sensors 18(4), 2660–2680 (2018)
Zhao, S., et al.: CycleEmotionGAN: emotional semantic consistency preserved cyclegan for adapting image emotions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2620–2627 (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
This work is supported by National Natural Science Foundation of China under Grant 61832004 and Grant 61672042. We thank the Ocean Information Technology Company, China Electronics Technology Group Corporation (CETC Ocean Corp.), for providing the underlying dataset for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Yang, X., Wang, G., Yan, J., Gao, J. (2021). T2I-CycleGAN: A CycleGAN for Maritime Road Network Extraction from Crowdsourcing Spatio-Temporal AIS Trajectory Data. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-67540-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-67540-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67539-4
Online ISBN: 978-3-030-67540-0
eBook Packages: Computer ScienceComputer Science (R0)