[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trajectory Modelling in Shared Spaces: Expert-Based vs. Deep Learning Approach?

  • Conference paper
  • First Online:
Multi-Agent-Based Simulation XXI (MABS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12316))

Abstract

Realistically modelling behaviour and interaction of heterogeneous road users (pedestrians and vehicles) in mixed-traffic zones (a.k.a. shared spaces) is challenging. The dynamic nature of the environment, heterogeneity of transport modes, and the absence of classical traffic rules make realistic microscopic traffic simulation hard problems. Existing multi-agent-based simulations of shared spaces largely use an expert-based approach, combining a symbolic (e.g. rule-based) modelling and reasoning paradigm (e.g. using BDI representations of beliefs and plans) with the hand-crafted encoding of the actual decision logic. More recently, deep learning (DL) models are largely used to derive and predict trajectories based on e.g. video data. In-depth studies comparing these two kinds of approaches are missing. In this work, we propose an expert-based model called GSFM that combines Social Force Model and Game theory and a DL model called LSTM-DBSCAN that manipulates Long Short-Term Memories and density-based clustering for multi-agent trajectory prediction. We create a common framework to run these two models in parallel to guarantee a fair comparison. Real-world mixed traffic data from shared spaces of different layout are used to calibrate/train and evaluate the models. The empirical results imply that both models can generate realistic predictions, but they differ in the way of handling collisions and mimicking heterogeneous behaviour. Via a thorough study, we draw the conclusion of their respective strengths and weaknesses.

Supported by the German Research Foundation (DFG) through the Research Training Group SocialCars (GRK 1931). The authors thank the participants of the DFG research project MODIS (DFG project #248905318) for providing data sets.

F.T. Johora and H. Cheng—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. http://tensorflow.org/

  2. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  3. Aschermann, M., Kraus, P., Müller, J.P.: LightJason. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 58–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59294-7_6

    Chapter  Google Scholar 

  4. Bandini, S., Crociani, L., Vizzari, G.: An approach for managing heterogeneous speed profiles in cellular automata pedestrian models. J. Cell. Autom. 12(5), 401–421 (2017)

    MathSciNet  Google Scholar 

  5. Bjørnskau, T.: The zebra crossing game-using game theory to explain a discrepancy between road user behaviour and traffic rules. Saf. Sci. 92, 298–301 (2017)

    Article  Google Scholar 

  6. Cheng, H., Li, Y., Sester, M.: Pedestrian group detection in shared space. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1707–1714. IEEE (2019)

    Google Scholar 

  7. Cheng, H., Sester, M.: Mixed Traffic Trajectory Prediction Using LSTM–Based Models in Shared Space. In: Mansourian, A., Pilesjö, P., Harrie, L., van Lammeren, R. (eds.) AGILE 2018. LNGC, pp. 309–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78208-9_16

    Chapter  Google Scholar 

  8. Cheng, H., Sester, M.: Modeling mixed traffic in shared space using LSTM with probability density mapping. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3898–3904. IEEE (2018)

    Google Scholar 

  9. Clarke, E.: Shared space: the alternative approach to calming traffic. Traffic Eng. Control 47(8), 290–292 (2006)

    Google Scholar 

  10. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996, pp. 226–231 (1996)

    Google Scholar 

  11. Franke, U., Gavrila, D., Görzig, S., Lindner, F., Paetzold, F., Wöhler, C.: Autonomous driving goes downtown. Intell. Syst. 13(6), 40–48 (1998)

    Article  Google Scholar 

  12. Gérin-Lajoie, M., Richards, C.L., McFadyen, B.J.: The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Mot. Control 9(3), 242–269 (2005)

    Article  Google Scholar 

  13. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  14. Hamilton-Baillie, B.: Shared space: reconciling people, places and traffic. Built Environ. 34(2), 161–181 (2008)

    Article  Google Scholar 

  15. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  16. Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules. arXiv preprint arXiv:1603.06318 (2016)

  17. Ivanovic, B., Schmerling, E., Leung, K., Pavone, M.: Generative modeling of multimodal multi-human behavior. arXiv preprint arXiv:1803.02015 (2018)

  18. Johora, F.T., Cheng, H., Müller, J.P., Sester, M.: An agent-based model for trajectory modelling in shared spaces: a combination of expert-based and deep learning approaches. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1878–1880 (2020)

    Google Scholar 

  19. Johora, F.T., Müller, J.P.: Modeling interactions of multimodal road users in shared spaces. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3568–3574. IEEE (2018)

    Google Scholar 

  20. Johora, F.T., Müller, J.P.: Zone-specific interaction modeling of pedestrians and cars in shared spaces. Transp. Res. Procedia 47, 251–258 (2020)

    Article  Google Scholar 

  21. Kaparias, I., Bell, M.G., Miri, A., Chan, C., Mount, B.: Analysing the perceptions of pedestrians and drivers to shared space. Transp. Res. Part F Traffic Psychol. Behav. 15(3), 297–310 (2012)

    Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  23. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)

    Google Scholar 

  24. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  25. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  26. Pascucci, F., Rinke, N., Schiermeyer, C., Berkhahn, V., Friedrich, B.: A discrete choice model for solving conflict situations between pedestrians and vehicles in shared space. arXiv preprint arXiv:1709.09412 (2017)

  27. Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., Turini, F.: Meaningful explanations of black box AI decision systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9780–9784 (2019)

    Google Scholar 

  28. Rinke, N., Schiermeyer, C., Pascucci, F., Berkhahn, V., Friedrich, B.: A multi-layer social force approach to model interactions in shared spaces using collision prediction. Transp. Res. Procedia 25, 1249–1267 (2017)

    Article  Google Scholar 

  29. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. arXiv preprint arXiv:1806.01482 (2018)

  30. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  31. Schönauer, R.: A microscopic traffic flow model for shared space. Ph.D. thesis, Graz University of Technology (2017)

    Google Scholar 

  32. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352. IEEE (2011)

    Google Scholar 

  33. Yang, D., Li, L., Redmill, K., Özgüner, Ü.: Top-view trajectories: a pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded campus. arXiv preprint arXiv:1902.00487 (2019)

  34. Yang, D., Özgüner, Ü., Redmill, K.: Social force based microscopic modeling of vehicle-crowd interaction. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1537–1542. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, H., Johora, F.T., Sester, M., Müller, J.P. (2021). Trajectory Modelling in Shared Spaces: Expert-Based vs. Deep Learning Approach?. In: Swarup, S., Savarimuthu, B.T.R. (eds) Multi-Agent-Based Simulation XXI. MABS 2020. Lecture Notes in Computer Science(), vol 12316. Springer, Cham. https://doi.org/10.1007/978-3-030-66888-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66888-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66887-7

  • Online ISBN: 978-3-030-66888-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics