[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Indoor Localization Based on the LoRa Technology

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2020)

Abstract

In recent years, with the development of more advanced mobile technologies and wider application requirements, many new technologies have been used for indoor localization. In this paper, we design and implement an indoor localization system based on the LoRa wireless communication technology. We proposed an improved KNN based algorithm which can greatly reduce the size of the fingerprint database. The locating system is easy to deploy, it has good accuracy and low latency. Our field study showed that it can locate a moving object or user with the accuracy of 96.72%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aref, M., Sikora, A.: Free space range measurements with Semtech LoRa\(^{\text{TM}}\) technology. In: 2014 2nd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, pp. 19–23. IEEE (2014)

    Google Scholar 

  2. Lavric, A., Popa, V.: Internet of things and LoRa\(^{\text{TM }}\) low-power wide-area networks: a survey. In: 2017 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–5. IEEE (2017)

    Google Scholar 

  3. Sinha, R.S., Wei, Y., Hwang, S.H.: A survey on LPWA technology: LoRa and NB-IoT. ICT Express 3(1), 14–21 (2017)

    Article  Google Scholar 

  4. Wang, H., Sen, S., Elgohary, A., et al.: No need to war-drive: unsupervised indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 197–210. ACM (2012)

    Google Scholar 

  5. Xu, W., Kim, J.Y., Huang, W., et al.: Measurement, characterization and modeling of LoRa technology in multi-floor buildings. IEEE Internet Things J. 7(1), 298–310 (2019)

    Article  Google Scholar 

  6. Youssef, M., Agrawala, A.: The Horus location determination system. Wireless Netw. 14(3), 357–374 (2008)

    Article  Google Scholar 

  7. Paul, A.S., Wan, E.A., Adenwala, F., et al.: MobileRF: a robust device-free tracking system based on a hybrid neural network HMM classifier. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 159–170. ACM (2014)

    Google Scholar 

  8. Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., et al.: Zee: zero-effort crowdsourcing for indoor localization. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, pp. 293–304. ACM (2012)

    Google Scholar 

  9. Wu, C., Yang, Z., Liu, Y.: Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 14(2), 444–457 (2014)

    Article  Google Scholar 

  10. Wu, C., Yang, Z., Liu, Y., et al.: WILL: wireless indoor localization without site survey. IEEE Trans. Parallel. Distrib. Syst. 24(4), 839–848 (2012)

    Google Scholar 

  11. Yang, S., Dessai, P., Verma, M., et al.: FreeLoc: calibration-free crowdsourced indoor localization. In: 2013 Proceedings IEEE INFOCOM, pp. 2481–2489. IEEE (2013)

    Google Scholar 

  12. Machhamer, R., Dziubany, M., Czenkusch, L., et al.: Online offline learning for sound-based indoor localization using low-cost hardware. IEEE Access 7, 155088–155106 (2019)

    Article  Google Scholar 

  13. Yu, J., Na, Z., Liu, X., et al.: WiFi/PDR-integrated indoor localization using unconstrained smartphones. EURASIP J. Wireless Commun. Netw. 2019(1), 41 (2019)

    Article  Google Scholar 

  14. Ye, H., Gu, T., Tao, X., et al.: Scalable floor localization using barometer on smartphone. Wireless Commun. Mob. Comput. 16(16), 2557–2571 (2016)

    Article  Google Scholar 

  15. Liando, J.C., Gamage, A., Tengourtius, A.W., et al.: Known and unknown facts of LoRa: experiences from a large-scale measurement study. ACM Trans. Sens. Netw. (TOSN) 15(2), 1–35 (2019)

    Article  Google Scholar 

  16. Augustin, A., Yi, J., Clausen, T., et al.: A study of LoRa: long range & low power networks for the internet of things. Sensors 16(9), 1466 (2016)

    Article  Google Scholar 

  17. Hou, X., Arslan, T.: Monte Carlo localization algorithm for indoor positioning using Bluetooth low energy devices. In: 2017 International Conference on Localization and GNSS (ICL-GNSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Dickinson, P., Cielniak, G., Szymanezyk, O., et al.: Indoor positioning of shoppers using a network of Bluetooth low energy beacons. In: 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2016)

    Google Scholar 

  19. Cattani, M., Boano, C.A., Römer, K.: An experimental evaluation of the reliability of LoRa long-range low-power wireless communication. J. Sens. Actuator Netw. 6(2), 7 (2017)

    Article  Google Scholar 

  20. Ye, H., Yang, W., Yao, Y., et al.: BTrack: using barometer for energy efficient location tracking on mountain roads. IEEE Access 6, 66998–67009 (2018)

    Article  Google Scholar 

  21. Khamis, A., Chou, C.T., Kusy, B., et al.: CardioFi: enabling heart rate monitoring on unmodified COTS WiFi devices. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 97–106 (2018)

    Google Scholar 

  22. van der Helm, S., Coppola, M., McGuire, K.N., et al.: On-board range-based relative localization for micro air vehicles in indoor leader-follower flight. Auton. Robot. 44, 1–27 (2019)

    Google Scholar 

  23. Zhang, H., Cui, J., Feng, L., et al.: High-precision indoor visible light positioning using deep neural network based on the Bayesian regularization with sparse training point. IEEE Photonics J. 11(3), 1–10 (2019)

    Google Scholar 

  24. Carlino, L., Bandiera, F., Coluccia, A., et al.: Improving localization by testing mobility. IEEE Trans. Signal Process. 67(13), 3412–3423 (2019)

    Article  MathSciNet  Google Scholar 

  25. Hou, X., Arslan, T., Juri, A., et al.: Indoor localization for Bluetooth low energy devices using weighted off-set triangulation algorithm. ION-GNSS 2016, 2286–2292 (2016)

    Google Scholar 

  26. Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 173–184. ACM (2010)

    Google Scholar 

  27. He, S., Chan, S.H.G.: INTRI: contour-based trilateration for indoor fingerprint-based localization. IEEE Trans. Mob. Comput. 16(6), 1676–1690 (2016)

    Article  Google Scholar 

  28. Jiang, Y., Li, Z., Wang, J.: PTrack: enhancing the applicability of pedestrian tracking with wearables. IEEE Trans. Mob. Comput. 18(2), 431–443 (2018)

    Article  Google Scholar 

  29. Zhang, L., Liu, J., Jiang, H., et al.: SensTrack: energy-efficient location tracking with smartphone sensors. IEEE Sens. J. 13(10), 3775–3784 (2013)

    Article  Google Scholar 

  30. Shtar, G., Shapira, B., Rokach, L.: Clustering Wi-Fi fingerprints for indoor-outdoor detection. Wireless Netw. 25(3), 1341–1359 (2019)

    Article  Google Scholar 

  31. Chow, K.H., He, S., Tan, J., et al.: Efficient locality classification for indoor fingerprint-based systems. IEEE Trans. Mob. Comput. 18(2), 290–304 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiBo Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, R., Ye, H., Sheng, L. (2021). Indoor Localization Based on the LoRa Technology. In: Guan, M., Na, Z. (eds) Machine Learning and Intelligent Communications. MLICOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-66785-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66785-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66784-9

  • Online ISBN: 978-3-030-66785-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics