Abstract
In recent years, with the development of more advanced mobile technologies and wider application requirements, many new technologies have been used for indoor localization. In this paper, we design and implement an indoor localization system based on the LoRa wireless communication technology. We proposed an improved KNN based algorithm which can greatly reduce the size of the fingerprint database. The locating system is easy to deploy, it has good accuracy and low latency. Our field study showed that it can locate a moving object or user with the accuracy of 96.72%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aref, M., Sikora, A.: Free space range measurements with Semtech LoRa\(^{\text{TM}}\) technology. In: 2014 2nd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, pp. 19–23. IEEE (2014)
Lavric, A., Popa, V.: Internet of things and LoRa\(^{\text{TM }}\) low-power wide-area networks: a survey. In: 2017 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–5. IEEE (2017)
Sinha, R.S., Wei, Y., Hwang, S.H.: A survey on LPWA technology: LoRa and NB-IoT. ICT Express 3(1), 14–21 (2017)
Wang, H., Sen, S., Elgohary, A., et al.: No need to war-drive: unsupervised indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 197–210. ACM (2012)
Xu, W., Kim, J.Y., Huang, W., et al.: Measurement, characterization and modeling of LoRa technology in multi-floor buildings. IEEE Internet Things J. 7(1), 298–310 (2019)
Youssef, M., Agrawala, A.: The Horus location determination system. Wireless Netw. 14(3), 357–374 (2008)
Paul, A.S., Wan, E.A., Adenwala, F., et al.: MobileRF: a robust device-free tracking system based on a hybrid neural network HMM classifier. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 159–170. ACM (2014)
Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., et al.: Zee: zero-effort crowdsourcing for indoor localization. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, pp. 293–304. ACM (2012)
Wu, C., Yang, Z., Liu, Y.: Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 14(2), 444–457 (2014)
Wu, C., Yang, Z., Liu, Y., et al.: WILL: wireless indoor localization without site survey. IEEE Trans. Parallel. Distrib. Syst. 24(4), 839–848 (2012)
Yang, S., Dessai, P., Verma, M., et al.: FreeLoc: calibration-free crowdsourced indoor localization. In: 2013 Proceedings IEEE INFOCOM, pp. 2481–2489. IEEE (2013)
Machhamer, R., Dziubany, M., Czenkusch, L., et al.: Online offline learning for sound-based indoor localization using low-cost hardware. IEEE Access 7, 155088–155106 (2019)
Yu, J., Na, Z., Liu, X., et al.: WiFi/PDR-integrated indoor localization using unconstrained smartphones. EURASIP J. Wireless Commun. Netw. 2019(1), 41 (2019)
Ye, H., Gu, T., Tao, X., et al.: Scalable floor localization using barometer on smartphone. Wireless Commun. Mob. Comput. 16(16), 2557–2571 (2016)
Liando, J.C., Gamage, A., Tengourtius, A.W., et al.: Known and unknown facts of LoRa: experiences from a large-scale measurement study. ACM Trans. Sens. Netw. (TOSN) 15(2), 1–35 (2019)
Augustin, A., Yi, J., Clausen, T., et al.: A study of LoRa: long range & low power networks for the internet of things. Sensors 16(9), 1466 (2016)
Hou, X., Arslan, T.: Monte Carlo localization algorithm for indoor positioning using Bluetooth low energy devices. In: 2017 International Conference on Localization and GNSS (ICL-GNSS), pp. 1–6. IEEE (2017)
Dickinson, P., Cielniak, G., Szymanezyk, O., et al.: Indoor positioning of shoppers using a network of Bluetooth low energy beacons. In: 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2016)
Cattani, M., Boano, C.A., Römer, K.: An experimental evaluation of the reliability of LoRa long-range low-power wireless communication. J. Sens. Actuator Netw. 6(2), 7 (2017)
Ye, H., Yang, W., Yao, Y., et al.: BTrack: using barometer for energy efficient location tracking on mountain roads. IEEE Access 6, 66998–67009 (2018)
Khamis, A., Chou, C.T., Kusy, B., et al.: CardioFi: enabling heart rate monitoring on unmodified COTS WiFi devices. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 97–106 (2018)
van der Helm, S., Coppola, M., McGuire, K.N., et al.: On-board range-based relative localization for micro air vehicles in indoor leader-follower flight. Auton. Robot. 44, 1–27 (2019)
Zhang, H., Cui, J., Feng, L., et al.: High-precision indoor visible light positioning using deep neural network based on the Bayesian regularization with sparse training point. IEEE Photonics J. 11(3), 1–10 (2019)
Carlino, L., Bandiera, F., Coluccia, A., et al.: Improving localization by testing mobility. IEEE Trans. Signal Process. 67(13), 3412–3423 (2019)
Hou, X., Arslan, T., Juri, A., et al.: Indoor localization for Bluetooth low energy devices using weighted off-set triangulation algorithm. ION-GNSS 2016, 2286–2292 (2016)
Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 173–184. ACM (2010)
He, S., Chan, S.H.G.: INTRI: contour-based trilateration for indoor fingerprint-based localization. IEEE Trans. Mob. Comput. 16(6), 1676–1690 (2016)
Jiang, Y., Li, Z., Wang, J.: PTrack: enhancing the applicability of pedestrian tracking with wearables. IEEE Trans. Mob. Comput. 18(2), 431–443 (2018)
Zhang, L., Liu, J., Jiang, H., et al.: SensTrack: energy-efficient location tracking with smartphone sensors. IEEE Sens. J. 13(10), 3775–3784 (2013)
Shtar, G., Shapira, B., Rokach, L.: Clustering Wi-Fi fingerprints for indoor-outdoor detection. Wireless Netw. 25(3), 1341–1359 (2019)
Chow, K.H., He, S., Tan, J., et al.: Efficient locality classification for indoor fingerprint-based systems. IEEE Trans. Mob. Comput. 18(2), 290–304 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Tian, R., Ye, H., Sheng, L. (2021). Indoor Localization Based on the LoRa Technology. In: Guan, M., Na, Z. (eds) Machine Learning and Intelligent Communications. MLICOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-66785-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-66785-6_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66784-9
Online ISBN: 978-3-030-66785-6
eBook Packages: Computer ScienceComputer Science (R0)