Abstract
In domain generalization the target domain is not known at training time. We show that a style transfer based data augmentation strategy can be implemented easily and outperforms the current state of the art domain generalization methods. Moreover, we observe that those methods, even if combined with the described data augmentation, do not take advantage of it, indicating the need of new generalization solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: CVPR (2019)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)
Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: ICCV (2019)
Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: CVPR (2018)
Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. In: AAAI (2020)
Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)
Wang, H., Ge, S., Lipton, Z., Xing, E.P.: Learning robust global representations by penalizing local predictive power. In: NeurIPS (2019)
Xu, J., Xiao, L., López, A.M.: Self-supervised domain adaptation for computer vision tasks. IEEE Access 7, 156694–156706 (2019)
Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI (2020)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)
Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. In: AAAI (2020)
Acknowledgements
Computational resources provided by hpc@polito: (http://hpc.polito.it).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 15961 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Borlino, F.C., D’Innocente, A., Tommasi, T. (2020). Domain Generalization vs Data Augmentation: An Unbiased Perspective. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-66415-2_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66414-5
Online ISBN: 978-3-030-66415-2
eBook Packages: Computer ScienceComputer Science (R0)