[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Building Trajectories Over Topology with TDA-PTS: An Application in Modelling Temporal Phenotypes of Disease

  • Conference paper
  • First Online:
ECML PKDD 2020 Workshops (ECML PKDD 2020)

Abstract

Being able to better understand the underlying structure of clinical data is a topic of growing importance. Topological data analysis enables data scientists to uncover the “shape” of data by extracting the underlying topological structure which enables distinct regions to be identified. For example, certain regions may be associated with early-stage disease whilst others may represent different advanced disease sub-types. The identification of these regions can help clinicians to better understand specific patients’ symptoms based upon where they lie in the disease topology, and therefore to make more targeted interventions. However, these topologies do not capture any sequential or temporal information. Pseudo-time series analysis can generate realistic trajectories through non-time-series data based on a combination of graph theory and the exploitation of expert knowledge (e.g. disease staging information). In this paper, we explore the combination of pseudo time and topological data analysis to build realistic trajectories over disease topologies. Using three different datasets: simulated, diabetes and genomic data, we explore how the combined method can highlight distinct temporal phenotypes in each disease based on the possible trajectories through the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dagliati, A., et al.: Temporal electronic phenotyping by mining careflows of breast cancer patients. J. Biomed. Inform. 66, 136–147 (2017)

    Article  Google Scholar 

  2. Hripcsak, G., Albers, D.J.: Next-generation phenotyping of electronic health records. J. Am. Med. Inf. Assoc. 20(1), 117–121 (2013)

    Article  Google Scholar 

  3. Li, L., et al.: Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7(311), 311ra174 (2015)

    Google Scholar 

  4. Nielson, J.L., et al.: Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat. Commun. 6(8581), 1–12 (2015)

    Google Scholar 

  5. Torres, B.Y., Oliveira, J.M., Tate, A.T., Rath, P., Cumnock, K., Schneider, D.S.: Tracking resilience to infections by mapping disease space. PLoS Comput. Biol. 14(4), e1002436 (2016)

    Article  Google Scholar 

  6. Singh, G., Memoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: SPBG: Eurographics Symposium on Point Based Graphics, Prague, pp. 91–100. The Eurographics Association (2007)

    Google Scholar 

  7. Nicolau, M., Levine, A., Carlsson, G.: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. 108(17), 7265–7270 (2011)

    Article  Google Scholar 

  8. Lum, P.Y., et al.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3(1), 1236 (2013)

    Article  Google Scholar 

  9. Torres-Tramón, P., Hromic, H., Heravi, B.R.: Topic detection in twitter using topology data analysis. In: Daniel, F., Diaz, O. (eds.) ICWE 2015. LNCS, vol. 9396, pp. 186–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24800-4_16

    Chapter  Google Scholar 

  10. Gholizadeh, S., Seyeditabari, A., Zadrozny, W.: Topological signature of 19th century novelists. Big Data Cogn. Comput. 2(4), 33 (2018)

    Article  Google Scholar 

  11. Nilsson, D., Ekgren, A.: Topology and Word Spaces. Stockholm: KTH Computer Science and Communication (2013)

    Google Scholar 

  12. Zhu, X.: Persistent homology: an introduction and a new text representation for natural language processing. In: IJCAI International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, Beijing, pp. 1953–1959 (2013)

    Google Scholar 

  13. Sardiu, M., Gilmore, J., Groppe, B., Florens, L., Washburn, M.: Identification of topological network modules in perturbed protein interaction networks. Sci. Rep. 7(43845), 1–13 (2107)

    Google Scholar 

  14. Rizvi, A., et al.: Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat. Biotechnol. 35(6), 551–560 (2017)

    Article  Google Scholar 

  15. Romano, D., et al.: Topological methods reveal high and low functioning neuro-phenotypes within fragile X syndrome. Hum. Brain Mapp. 35, 4904–4915 (2014)

    Article  Google Scholar 

  16. Campbell, K.R., Yau, C.: Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data. Nat. Commun. 9(1), 2442 (2018)

    Article  Google Scholar 

  17. Tucker, A., Garway-Heath, D.: The pseudotemporal bootstrap for predicting glaucoma from cross-sectional visual field data. IEEE Trans. Inf. Technol. Biomed. 14(1), 79–85 (2010)

    Article  Google Scholar 

  18. Dagliati, A., et al.: Inferring temporal phenotypes with topological data analysis and pseudo time-series. In: Riaño, D., Wilk, S., ten Teije, A. (eds.) AIME 2019. LNCS (LNAI), vol. 11526, pp. 399–409. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21642-9_50

    Chapter  Google Scholar 

  19. Li, Y., Tucker, A.: Uncovering disease regions using pseudo time-series trajectories on clinical trial data. In: 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010), Yantai, pp. 2356–2362. IEEE (2010)

    Google Scholar 

  20. Li, Y., Swift, S., Tucker, A.: Modelling and analysing the dynamics of disease progression from cross-sectional studies. J. Biomed. Inform. 46(2), 266–274 (2013)

    Article  Google Scholar 

  21. Floyd, R.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  22. Sanchez-Palencia, A., et al.: Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int. J. Cancer 129(2), 355–364 (2011)

    Article  Google Scholar 

  23. Pei, H., et al.: FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3), 259–266 (2009)

    Article  Google Scholar 

  24. The National Center for Biotechnology Information: Gene Expression Omnibus (GEO) – Accession Display. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11151. Accessed 04 Mar 2020

  25. Rosty, C., et al.: Identification of a proliferation gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma. Oncogene 24(47), 7094–7104 (2005)

    Article  Google Scholar 

  26. Tan, H., Wang, X., Yang, X., Li, H., Liu, B., Pan, P.: Oncogenic role of epithelial cell transforming sequence 2 in lung adenocarcinoma cells. Exp. Ther. Med. 12(4), 2088–2094 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Erfan Sajjadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sajjadi, S.E., Draghi, B., Sacchi, L., Dagliani, A., Holmes, J., Tucker, A. (2020). Building Trajectories Over Topology with TDA-PTS: An Application in Modelling Temporal Phenotypes of Disease. In: Koprinska, I., et al. ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65965-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65964-6

  • Online ISBN: 978-3-030-65965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics