[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Accelerating Lattice Based Proxy Re-encryption Schemes on GPUs

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2020)

Abstract

Proxy Re-Encryption (PRE) is an indispensable tool in many public-key cryptographic schemes that enables users to delegate decryption rights to other users via a proxy. In this work, we present a high performance implementation of PRE schemes on NVIDIA GPUs. We target two lattice based PRE schemes, BV-PRE and Ring-GSW PRE defined over polynomial rings. We design a parallel Number Theoretic Transform (NTT) procedure capable of working on arbitrary precision moduli (in CRT form) and demonstrate several low level and GPU optimizations techniques to accelerate the PRE schemes.

For the same or higher security settings our results show 39x to 228x factors of improvement in performance with a peak throughput of 6.3 Mbps when compared to the CPU implementation of the BV-PRE scheme in the PALISADE lattice crypto software library. Similarly, for the Ring-GSW PRE scheme we achieve a peak throughput of 49 Mbps and up to 11x improvement in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. (TISSEC) 9(1), 1–30 (2006)

    Article  MATH  Google Scholar 

  3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

    Chapter  Google Scholar 

  4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6, 13 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 185–194. ACM (2007)

    Google Scholar 

  8. Dai, W., Doröz, Y., Sunar, B.: Accelerating NTRU based homomorphic encryption using GPUs. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE (2014)

    Google Scholar 

  9. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In: Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_11

    Chapter  Google Scholar 

  10. Dhem, J.-F., Quisquater, J.-J.: Recent results on modular multiplications for smart cards. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 336–352. Springer, Heidelberg (2000). https://doi.org/10.1007/10721064_31

    Chapter  Google Scholar 

  11. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using NTRU. IACR Cryptology ePrint Archive, vol. 2014, p. 39 (2014)

    Google Scholar 

  12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  13. Gentry, C., Sahai, A., Waters, B.: homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  14. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9, pp. 169–178 (2009)

    Google Scholar 

  15. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31

    Chapter  MATH  Google Scholar 

  16. Khedr, A., Gulak, G., Vaikuntanathan, V.: SHIELD: scalable homomorphic implementation of encrypted data-classifiers. IEEE Trans. Comput. 65(9), 2848–2858 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khurana, H., Heo, J., Pant, M.: From proxy encryption primitives to a deployable secure-mailing-list solution. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 260–281. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_19

    Chapter  Google Scholar 

  18. Laine, K., Lauter, K.: Key recovery for LWE in polynomial time (2015)

    Google Scholar 

  19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  20. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234 (2012)

    Google Scholar 

  21. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  22. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption for publish/subscribe systems. ACM Trans. Priv. Secur. (TOPS) 20(4), 14 (2017)

    Google Scholar 

  23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a secure and interoperable DRM architecture. In: Proceedings of the ACM Workshop on Digital Rights Management, pp. 69–78. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyana Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, G., Rohloff, K. (2020). Accelerating Lattice Based Proxy Re-encryption Schemes on GPUs. In: Krenn, S., Shulman, H., Vaudenay, S. (eds) Cryptology and Network Security. CANS 2020. Lecture Notes in Computer Science(), vol 12579. Springer, Cham. https://doi.org/10.1007/978-3-030-65411-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65411-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65410-8

  • Online ISBN: 978-3-030-65411-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics