Abstract
The web facilitates the creation, publication, and exchange of a wide variety of information. Particularly, the dramatic growth of unstructured web content makes text classification in a basic task to automate. Although well-known classification methods come from natural language processing and the machine learning fields, in this paper, the authors address the classification task as the ability to recognize topics or concepts in a text. To achieve this goal, we use a domain ontology as a driver of this process. The main motivation behind this work is to take advantage of the existing domain ontologies to classify and analyze the scientific production of a certain area of knowledge. Preliminary findings obtained by classifying a subset of Computer Science papers encourage us to remain researching in this area. Also, we will continue to discover a better way to improve results by combining it with other well-known approaches for text classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
The selection of top-12 disciplines was made to ensure enough examples for each group.
References
Aggarwal, C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 77–128. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_4
Allahyari, M., Kochut, K.J., Janik, M.: Ontology-based text classification into dynamically defined topics. In: 2014 IEEE International Conference on Semantic Computing, pp. 273–278, June 2014. https://doi.org/10.1109/ICSC.2014.51
Alsanad, A.A., Chikh, A., Mirza, A.: A domain ontology for software requirements change management in global software development environment. IEEE Access 7, 49352–49361 (2019). https://doi.org/10.1109/ACCESS.2019.2909839
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003)
Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do we need them? IEEE Intell. Syst. Appl. 14(1), 20–26 (1999). https://doi.org/10.1109/5254.747902
Chicaiza, J., Piedra, N., Lopez-Vargas, J., Tovar-Caro, E.: Domain categorization of open educational resources based on linked data. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2014. CCIS, vol. 468, pp. 15–28. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11716-4_2
Han, K., Yang, P., Mishra, S., Diesner, J.: WikiCSSH: extracting computer science subject headings from Wikipedia. In: Proceedings of the first Scientific Knowledge Graphs Workshop (2020). https://www.nlm.nih.gov/mesh/concept
Jindal, R., Malhotra, R., Jain, A.: Techniques for text classification: literature review and current trends. Webology 12(2), 1–28 (2015)
Priya, M., Kumar, C.: A survey of state of the art of ontology construction and merging using formal concept analysis. Indian J. Sci. Technol. 8(24) (2015). https://doi.org/10.17485/ijst/2015/v8i24/82808
Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12
Sanchez-Pi, N., Martí, L., Bicharra Garcia, A.C.: Improving ontology-based text classification: an occupational health and security application. J. Appl. Logic 17, 48–58 (2016). https://doi.org/10.1016/j.jal.2015.09.008
Thangaraj, M., Sivakami, M.: Text classification techniques: a literature review. Interdisc. J. Inf. Knowl. Manage. 13, 117–135 (2018). https://doi.org/10.28945/4066
Villazón-Terrazas, B., Suárez-Figueroa, M., Gomez-Perez, A.: A pattern-based method for re-engineering non-ontological resources into ontologies. Int. J. Semant. Web Inf. Syst. 6, 27–63 (2010). https://doi.org/10.4018/jswis.2010100102
Zhou, P., El-Gohary, N.: Ontology-based multilabel text classification of construction regulatory documents. J. Comput. Civ. Eng. 30(4), (2016). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000530
Acknowledgment
This work has been partially funded by scholarship provided by the “Secretaría Nacional de Educación Superior, Ciencia y Tecnología e Innovación” of Ecuador (SENESCYT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chicaiza, J., Reátegui, R. (2020). Using Domain Ontologies for Text Classification. A Use Case to Classify Computer Science Papers. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S.M., Shandilya, S.K. (eds) Knowledge Graphs and Semantic Web. KGSWC 2020. Communications in Computer and Information Science, vol 1232. Springer, Cham. https://doi.org/10.1007/978-3-030-65384-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-65384-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65383-5
Online ISBN: 978-3-030-65384-2
eBook Packages: Computer ScienceComputer Science (R0)