[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Domain Ontologies for Text Classification. A Use Case to Classify Computer Science Papers

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2020)

Abstract

The web facilitates the creation, publication, and exchange of a wide variety of information. Particularly, the dramatic growth of unstructured web content makes text classification in a basic task to automate. Although well-known classification methods come from natural language processing and the machine learning fields, in this paper, the authors address the classification task as the ability to recognize topics or concepts in a text. To achieve this goal, we use a domain ontology as a driver of this process. The main motivation behind this work is to take advantage of the existing domain ontologies to classify and analyze the scientific production of a certain area of knowledge. Preliminary findings obtained by classifying a subset of Computer Science papers encourage us to remain researching in this area. Also, we will continue to discover a better way to improve results by combining it with other well-known approaches for text classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://musicontology.com/.

  2. 2.

    https://projects.ics.forth.gr/isl/MarineTLO/.

  3. 3.

    http://obi-ontology.org/.

  4. 4.

    http://geneontology.org/.

  5. 5.

    https://cso.kmi.open.ac.uk/classify/.

  6. 6.

    https://dev.elsevier.com/documentation/ScopusSearchAPI.wadl.

  7. 7.

    https://pypi.org/project/cso-classifier/.

  8. 8.

    The selection of top-12 disciplines was made to ensure enough examples for each group.

References

  1. Aggarwal, C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 77–128. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_4

    Chapter  Google Scholar 

  2. Allahyari, M., Kochut, K.J., Janik, M.: Ontology-based text classification into dynamically defined topics. In: 2014 IEEE International Conference on Semantic Computing, pp. 273–278, June 2014. https://doi.org/10.1109/ICSC.2014.51

  3. Alsanad, A.A., Chikh, A., Mirza, A.: A domain ontology for software requirements change management in global software development environment. IEEE Access 7, 49352–49361 (2019). https://doi.org/10.1109/ACCESS.2019.2909839

    Article  Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003)

    MATH  Google Scholar 

  5. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do we need them? IEEE Intell. Syst. Appl. 14(1), 20–26 (1999). https://doi.org/10.1109/5254.747902

    Article  Google Scholar 

  6. Chicaiza, J., Piedra, N., Lopez-Vargas, J., Tovar-Caro, E.: Domain categorization of open educational resources based on linked data. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2014. CCIS, vol. 468, pp. 15–28. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11716-4_2

    Chapter  Google Scholar 

  7. Han, K., Yang, P., Mishra, S., Diesner, J.: WikiCSSH: extracting computer science subject headings from Wikipedia. In: Proceedings of the first Scientific Knowledge Graphs Workshop (2020). https://www.nlm.nih.gov/mesh/concept

  8. Jindal, R., Malhotra, R., Jain, A.: Techniques for text classification: literature review and current trends. Webology 12(2), 1–28 (2015)

    Google Scholar 

  9. Priya, M., Kumar, C.: A survey of state of the art of ontology construction and merging using formal concept analysis. Indian J. Sci. Technol. 8(24) (2015). https://doi.org/10.17485/ijst/2015/v8i24/82808

  10. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer science ontology: a large-scale taxonomy of research areas. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 187–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_12

    Chapter  Google Scholar 

  11. Sanchez-Pi, N., Martí, L., Bicharra Garcia, A.C.: Improving ontology-based text classification: an occupational health and security application. J. Appl. Logic 17, 48–58 (2016). https://doi.org/10.1016/j.jal.2015.09.008

    Article  MathSciNet  Google Scholar 

  12. Thangaraj, M., Sivakami, M.: Text classification techniques: a literature review. Interdisc. J. Inf. Knowl. Manage. 13, 117–135 (2018). https://doi.org/10.28945/4066

    Article  Google Scholar 

  13. Villazón-Terrazas, B., Suárez-Figueroa, M., Gomez-Perez, A.: A pattern-based method for re-engineering non-ontological resources into ontologies. Int. J. Semant. Web Inf. Syst. 6, 27–63 (2010). https://doi.org/10.4018/jswis.2010100102

    Article  Google Scholar 

  14. Zhou, P., El-Gohary, N.: Ontology-based multilabel text classification of construction regulatory documents. J. Comput. Civ. Eng. 30(4), (2016). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000530

Download references

Acknowledgment

This work has been partially funded by scholarship provided by the “Secretaría Nacional de Educación Superior, Ciencia y Tecnología e Innovación” of Ecuador (SENESCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janneth Chicaiza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chicaiza, J., Reátegui, R. (2020). Using Domain Ontologies for Text Classification. A Use Case to Classify Computer Science Papers. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S.M., Shandilya, S.K. (eds) Knowledge Graphs and Semantic Web. KGSWC 2020. Communications in Computer and Information Science, vol 1232. Springer, Cham. https://doi.org/10.1007/978-3-030-65384-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65384-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65383-5

  • Online ISBN: 978-3-030-65384-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics