[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

INMOST Platform for Parallel Multi-physics Applications: Multi-phase Flow in Porous Media and Blood Flow Coagulation

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1331))

Included in the following conference series:

  • 706 Accesses

Abstract

INMOST (Integrated Numerical Modeling Object-oriented Supercomputing Technologies) is an open-source platform for fast development of efficient and flexible parallel multi-physics models. In this paper we review capabilities of the platform and present two INMOST-based applications for parallel simulations of multi-phase flow in porous media and clot formation in blood flow. For a more detailed description we refer to [1].

The finite volume (FV) method is the popular approach to spatial discretizations on general meshes (i.e. meshes composed of general polyhedral cells), especially for geophysical and biomedical applications where local mass conservation is vital. INMOST provides a complete set of tools for development of FV discretizations for linear and nonlinear problems: automatic differentiation tool for assembly of the nonlinear residual and corresponding Jacobian and Hessian matrices, iterative solvers of nonlinear systems arising from PDEs discretization, parallel solvers for sparse linear algebraic systems.

The platform also provides a technology for development of numerical models on general unstructured grids. It includes parallel mesh data structures, low-level infrastructure for reading, writing, creating, manipulating and partitioning of distributed general meshes.

The synergy of INMOST platform and efficient FV discretizations for systems of PDEs on general meshes produces a powerful tool for supercomputing simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vassilevski, Y., Terekhov, K., Nikitin, K., Kapyrin, I.: Parallel Finite Volume Computation on General Meshes. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-47232-0

  2. Vassilevski, Y., Konshin, I., Kopytov, G., Terekhov, K.: INMOST - Program Platform and Graphic Environment for Development of Parallel Numerical Models on General Meshes. Moscow University Publishing, Moscow (2013). (in Russian)

    Google Scholar 

  3. Boman, E.G., Çatalyürek, Ü.V., Chevalier, C., Devine, K.D.: The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: partitioning, ordering and coloring. Sci. Program. 20(2), 129–150 (2012)

    Google Scholar 

  4. Karypis, G., Schloegel, K., Kumar, V.: Parmetis. Parallel graph partitioning and sparse matrix ordering library. Version, 2 (2003)

    Google Scholar 

  5. Hartigan, J.A., Manchek, A.W.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28, 100–108 (1979)

    Google Scholar 

  6. Sleijpen, G.L., Fokkema, D.R.: BiCGStab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1(11), 2000 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Olschowka, M., Neumaier, A.: A new pivoting strategy for Gaussian elimination. Linear Algebra Appl. 240, 131–151 (1996)

    Article  MathSciNet  Google Scholar 

  8. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, pp. 157–172 (1969)

    Google Scholar 

  9. Karypis, G., Kumar, V.: Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0 (1995)

    Google Scholar 

  10. Soules, G.W.: The rate of convergence of Sinkhorn balancing. Linear Algebra Appl. 150, 3–40 (1991)

    Article  MathSciNet  Google Scholar 

  11. Kaporin, I.E.: Scaling, reordering, and diagonal pivoting in ILU preconditionings. Russ. J. Numer. Anal. Math. Model. 22(4), 341–375 (2007)

    Article  MathSciNet  Google Scholar 

  12. Li, N., Saad, Y., Chow, E.: Crout versions of ILU for general sparse matrices. SIAM J. Sci. Comput. 25(2), 716–728 (2003)

    Article  MathSciNet  Google Scholar 

  13. Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its \(U^tU+ U^tR+ R^tU\)-decomposition. Numer. Linear Algebra Appl. 5(6), 483–509 (1998)

    Article  MathSciNet  Google Scholar 

  14. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

    Article  MathSciNet  Google Scholar 

  15. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM (JACM) 12(4), 547–560 (1965)

    Article  MathSciNet  Google Scholar 

  16. Evans, C., Pollock, S., Rebholz, L.G., Xiao, M.: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically). SIAM J. Numer. Anal. 58(1), 788–810 (2020)

    Article  MathSciNet  Google Scholar 

  17. Sterck, H.D.: A nonlinear GMRES optimization algorithm for canonical tensor decomposition. SIAM J. Sci. Comput. 34(3), A1351–A1379 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems. SIAM J. Sci. Comput. 35(2), 1120–1136 (2013)

    Article  MathSciNet  Google Scholar 

  19. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  20. Norne - the full Norne benchmark case, a real field black-oil model for an oil field in the Norwegian Sea. https://opm-project.org/?page_id=559

  21. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003)

    Article  MathSciNet  Google Scholar 

  22. Bouchnita, A.: Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions. PhD thesis, Universite Lyon 1 - Claude Bernard; Ecole Mohammadia d’Ingenieurs - Universite Mohammed V de Rabat - Maroc. (2017)

    Google Scholar 

  23. Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLOS ONE 15(7), e0235392 (2020). https://doi.org/10.1371/journal.pone.0235392

  24. Shen, F., Kastrup, C.J., Liu, Y., Ismagilov, R.F.: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler. Thromb. Vasc. Biol. 28(11), 2035–2041 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the RAS Research program No. 26 “Basics of algorithms and software for high performance computing” and RFBR grant 18-31-20048 “Mathematical models of coronary blood flows and thrombogenic processes in cardiac pathologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Vassilevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Terekhov, K., Nikitin, K., Vassilevski, Y. (2020). INMOST Platform for Parallel Multi-physics Applications: Multi-phase Flow in Porous Media and Blood Flow Coagulation. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-64616-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64616-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64615-8

  • Online ISBN: 978-3-030-64616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics