[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Synthetic Nervous System Model of the Insect Optomotor Response

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2020)

Abstract

We seek to increase the sophistication of our insect-like hexapod robot MantisBot’s visual system. We assembled and tested a benchtop robotic testbed with which to test our dynamical neural model of the insect visual system. Here we specifically model wide-field vision and the optomotor response. The system is composed of a Raspberry Pi with a camera outfitted with a 360° lens. The camera sits on a motorized turntable, which represents the “robot”. Above the turntable sits another motorized system that rotates a drum with printed patterns around the camera, which represents the visual “background”. The camera downsamples the visual scene and sends it to a synthetic nervous system (SNS) model of the insect optic lobe. The optic lobe is columnar. Each column detects changes in receptor intensity (retina), inhibits adjacent columns to increase dynamic range (lamina), compares time-delayed activities of adjacent columns to detect motion (medulla), then pools the motion of each column in a directionally-specific connectivity to compute the direction and speed of the wide-field scene (lobula plate). Our robotic model successfully encodes lateral wide-field visual speed into the activity of a pair of opposing Lobula Plate Tangential Cells (LPTCs). Furthermore, the optomotor response can be recreated by using the LPTCs to stimulate the neck motor neurons (MNs), producing a real-time, closed-loop dynamical model of the optomotor response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., Lindemann, J.P.: Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioural action. Front. Neural Circuits. 6, 1–23 (2012)

    Article  Google Scholar 

  2. Bagheri, Z.M., Wiederman, S.D., Cazzolato, B.S., Grainger, S., O’Carroll, D.C.: Performance of an insect-inspired target tracker in natural conditions. Bioinspir. Biomim. 12, 025006 (2017)

    Article  Google Scholar 

  3. Borst, Alexander., Haag, Jürgen, Mauss, Alex S.: How fly neurons compute the direction of visual motion. J. Comp. Physiol. A. 206(2), 109–124 (2019). https://doi.org/10.1007/s00359-019-01375-9

    Article  Google Scholar 

  4. Webb, B.: Robots with insect brains. Science. 368, 244–245 (2020)

    Article  Google Scholar 

  5. Suver, M.P., Huda, A., Iwasaki, N., Safarik, S., Dickinson, M.H.: An array of descending visual interneurons encoding self-motion in drosophila. J. Neurosci. 36, 11768–11780 (2016)

    Article  Google Scholar 

  6. Rossel, S.: Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. A 139, 307–331 (1980)

    Article  Google Scholar 

  7. Nityananda, V., Tarawneh, G., Errington, S., Serrano-Pedraza, I., Read, J.: The optomotor response of the praying mantis is driven predominantly by the central visual field. J. Comp. Physiol. A. 203(1), 77–87 (2016). https://doi.org/10.1007/s00359-016-1139-3

    Article  Google Scholar 

  8. Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J. Exp. Biol. 208, 2237–2252 (2005)

    Article  Google Scholar 

  9. Meyer, H.G., et al.: Resource-efficient bio-inspired visual processing on the hexapod walking robot HECTOR. PLoS ONE 15, e0230620 (2020)

    Article  Google Scholar 

  10. Szczecinski, N.S., Goldsmith, C.A., Young, F.R., Quinn, R.D.: Tuning a robot servomotor to exhibit muscle-like dynamics. In: Conference on Biomimetic and Biohybrid Systems. (2019)

    Google Scholar 

  11. Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods. 187, 280–288 (2010)

    Article  Google Scholar 

  12. Szczecinski, N.S., et al.: Introducing MantisBot: hexapod robot controlled by a high-fidelity, real-time neural simulation. In: IEEE International Conference on Intelligent Robots and Systems. pp. 3875–3881. Hamburg, DE (2015)

    Google Scholar 

  13. Joly, J.-S., Recher, G., Brombin, A., Ngo, K., Hartenstein, V.: A conserved developmental mechanism builds complex visual systems in insects and vertebrates. Curr. Biol. 26, 1–9 (2016)

    Article  Google Scholar 

  14. Mihalas, S., Niebur, E.: A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput. 21, 704–718 (2009)

    Article  MathSciNet  Google Scholar 

  15. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017)

    Article  Google Scholar 

  16. Borst, A.: Neural circuits for elementary motion detection. J. Neurogenet. 28, 361–373 (2014)

    Article  Google Scholar 

  17. Barlow, H.B., Levick, W.R.: The mechanism of directionally selective units in rabbit’s retina. J. Physiol. 178, 477–504 (1965)

    Article  Google Scholar 

  18. Szczecinski, N.S., Getsy, A.P., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: MantisBot is a Robotic Model of Visually Guided Motion in the Praying Mantis. Arth. Struct, Dev (2017)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Szczecinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sedlackova, A., Szczecinski, N.S., Quinn, R.D. (2020). A Synthetic Nervous System Model of the Insect Optomotor Response. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64313-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64312-6

  • Online ISBN: 978-3-030-64313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics