[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Local Q-Convexity Histograms for Shape Analysis

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12148))

Included in the following conference series:

Abstract

In this paper we propose a novel local shape descriptor based on Q-convexity histograms. We investigate three different variants: (1) focusing only on the background points, (2) examining all the points and (3) omitting the zero bin. We study the properties of the variants on a shape and on a texture dataset. In an illustrative example, we compare the classification accuracy of the introduced local descriptor to its global counterpart, and also to a variant of Local Binary Patterns which is similar to our descriptor in the sense that its histogram collects frequencies of local configurations. We show that our descriptor can reach in many cases higher classification accuracy than the others .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H.B., Ess, A., Tuytelaars, T., Luc, V.G.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Brunetti, S., Balázs, P., Bodnár, P.: Extension of a one-dimensional convexity measure to two dimensions. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 105–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_9

    Chapter  Google Scholar 

  3. Brunetti, S., Balázs, P., Bodnár, P., Szűcs, J.: A spatial convexity descriptor for object enlacement. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 330–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_26

    Chapter  MATH  Google Scholar 

  4. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theoret. Comput. Sci. 304(1–3), 35–57 (2003)

    Article  MathSciNet  Google Scholar 

  5. Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic projections in quartic time. Theoret. Comput. Sci. 406(1–2), 55–62 (2008)

    Article  MathSciNet  Google Scholar 

  6. Clement, M., Poulenard, A., Kurtz, C., Wendling, L.: Directional enlacement histograms for the description of complex spatial configurations between objects. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2366–2380 (2017)

    Article  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005

    Google Scholar 

  8. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  9. Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for binary segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 258–271 (2016)

    Article  Google Scholar 

  10. Kylberg, G., Sintorn, I.-M.: Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J. Image Video Process. 2013(1), 1–20 (2013). https://doi.org/10.1186/1687-5281-2013-17

    Article  Google Scholar 

  11. Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1501–1512 (2006)

    Article  Google Scholar 

  12. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning, Stamford (2014)

    Google Scholar 

  13. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  14. Varga, L.G., Nyl, L.G., Nagy, A., Balzs, P.: Local and global uncertainty in binary tomographic reconstruction. Comput. Vis. Image Understand. 129, 52–62 (2014), http://www.sciencedirect.com/science/article/pii/S1077314214001179; Special section: Advances in Discrete Geometry for Computer Imagery

  15. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 923–934 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Judit Szűcs was supported by the UNKP-19-3-SZTE-291 New National Excellence Program of the Ministry for Innovation and Technology, Hungary. This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no. EFOP-3.6.3-VEKOP16-2017-00002. This research was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Szűcs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szűcs, J., Balázs, P. (2020). Local Q-Convexity Histograms for Shape Analysis. In: Lukić, T., Barneva, R., Brimkov, V., Čomić, L., Sladoje, N. (eds) Combinatorial Image Analysis. IWCIA 2020. Lecture Notes in Computer Science(), vol 12148. Springer, Cham. https://doi.org/10.1007/978-3-030-51002-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51002-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51001-5

  • Online ISBN: 978-3-030-51002-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics