Abstract
In the paper a new, state space, finite dimensional, non integer order model of a one-dimensional heat transfer process is considered. The proposed model uses a well known finite difference method and fractional Caputo operator to express the time derivative. The second order backward difference describes the derivative along the length. The analytical formula of the step response is given. Accuracy and convergence of the proposed model are numerically analyzed and compared to previously proposed state space model using semigroup approach. Results of simulations point that the good accuracy of the proposed model can be achieved for its relatively low order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)
Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer. Therm. Sci. 20(2), 763–769 (2016)
Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional order systems: modeling and control applications. In: Chua, L.O. (ed.) World Scientific Series on Nonlinear Science, pp. 1–178. University of California, Berkeley (2010)
Das, S.: Functional Fractional Calculus for System Identyfication and Control. Springer, Heidelberg (2010)
Dlugosz, M., Skruch, P.: The application of fractional-order models for thermal process modelling inside buildings. J. Building Phys. 1(1), 1–13 (2015)
Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)
Gal, C., Warma, M.: Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evol. Equ. Control Theory 5(1), 61–103 (2016)
Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Heidelberg (2011)
Kaczorek, T.: Singular fractional linear systems and electrical circuits. Int. J. Appl. Math. Comput. Sci. 21(2), 379–384 (2011)
Kaczorek, T.: Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems. Int. J. Appl. Math. Comput. Sci. 26(2), 277–283 (2016)
Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)
Kochubei, A.: Fractional-parabolic systems. Preprint arXiv:1009.4996 [math.ap] (2011)
Mitkowski, W.: Approximation of fractional diffusion-wave equation. Acta Mechanica et Automatica 5(2), 65–68 (2011)
Oprzedkiewicz, K.: The discrete-continuous model of heat plant. Automatyka 2(1), 35–45 (1998). (in Polish)
Oprzedkiewicz, K.: The interval parabolic system. Arch. Control Sci. 13(4), 415–430 (2003)
Oprzedkiewicz, K.: A controllability problem for a class of uncertain parameters linear dynamic systems. Arch. Control Sci. 14(1), 85–100 (2004)
Oprzedkiewicz, K.: An observability problem for a class of uncertain-parameter linear dynamic systems. Int. J. Appl. Math. Comput. Sci. 15(3), 331–338 (2005)
Oprzedkiewicz, K., Gawin, E.: A non-integer order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016)
Oprzedkiewicz, K., Gawin, E., Mitkowski, W.: Modeling heat distribution with the use of a non-integer order, state space model. Int. J. Appl. Math. Comput. Sci. 26(4), 749–756 (2016)
Oprzedkiewicz, K., Mitkowski, W.: A memory-efficient noninteger-order discrete-time state-space model of a heat transfer process. Int. J. Appl. Math. Comput. Sci. (AMCS) 28(4), 649–659 (2018)
Oprzedkiewicz, K., Mitkowski, W., Gawin, E., Dziedzic, K.: The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 501–507 (2018)
Oprzędkiewicz, K., Gawin, E., Mitkowski, W.: Parameter identification for non integer order, state space models of heat plant. In: MMAR 2016: 21st International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 29 August–01 September 2016, pp. 184–188 (2016)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Popescu, E.: On the fractional cauchy problem associated with a feller semigroup. Math. Rep. 12(2), 181–188 (2010)
Sajewski, L.: Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders. Int. J. Appl. Math. Comput. Sci. 27(1), 33–41 (2017)
Salti, N.A., Karimov, E., Kerbal, S.: Boundary-value problems for fractional heat equation involving Caputo-Fabrizio derivative. New Trends Math. Sci. 4(4), 79–89 (2016)
Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257(1), 2–11 (2015)
Acknowledgment
This paper was sponsored by AGH project no 16.16.120.773.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Oprzędkiewicz, K., Dziedzic, K. (2020). Accuracy Estimation of the Fractional, Discrete-Continuous Model of the One-Dimensional Heat Transfer Process. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_96
Download citation
DOI: https://doi.org/10.1007/978-3-030-50936-1_96
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50935-4
Online ISBN: 978-3-030-50936-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)